• Title/Summary/Keyword: Cooling Plate

Search Result 508, Processing Time 0.028 seconds

The Effect of Ambient Air Condition on Heat Transfer of Hot Steel Plate Cooled by an Impinging Water Jet

  • Lee, Pil-Jong;Park, Hae-Won;Lee, Sung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.740-750
    • /
    • 2003
  • It has been observed that the cooling capacity of an impinging water jet is affected by the seasonal conditions in large-scale steel manufacturing processes. To confirm this phenomenon, cooling experiments utilizing a hot steel plate cooled by a laminar jet were conducted for two initial ambient air temperatures (10$^{\circ}C$ and 40$^{\circ}C$) in a closed chamber, performing an inverse heat conduction method for quantitative comparison. This study reveals that the cooling capacity at an air temperature of 10$^{\circ}C$ is lower than the heat extracted at 40$^{\circ}C$. The amount of total extracted heat at 10$^{\circ}C$ is 15% less than at 40$^{\circ}C$ , These results Indicate the quantity of water vapor, absorbed until saturation, affects the mechanism of boiling heat transfer.

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

Study on Internal Void Closure in Slab ingot during Hot Plate Forging (열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구)

  • 조종래;김동권;김영득;이부윤
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF

Comparison of Unconfined and Confined Micro-scale Impinging Jets

  • Choo, Kyo-Sung;Youn, Young-Jik;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2210-2213
    • /
    • 2008
  • In the present study, effects of degree of confinement on heat transfer characteristics of a micro-scale slot jet impinging on a heated flat plate are experimentally investigated. The effects of Reynolds numbers (Re = $1000{\sim}5000$), lateral distances (x/B = $1{\sim}10$), nozzle-to-plate spacings (Z/B = $1{\sim}20$), and degree of confinement ($B_c$/B = 3, 48) on the Nusselt number are considered. The results show that the effects of the degree of confinement on the cooling performance of the micro-scale impinging slot jet are significant at lower nozzle-to-plate spacings and higher Reynolds numbers. In addition, it is shown that the cooling performance of the micro-scale unconfined slot impinging jet is 200% higher than that of the micro-scale confined slot impinging jet.

  • PDF

Evaluation of Microstructure and Formability of Rheocasting Aluminum Alloy by Inclined Cooling Plate (경사냉각판을 이용한 반응고 알루미늄 합금의 미세조직 및 성형성 평가)

  • Hwang, Bum-Kyu;Kim, Soon-Kook;Kim, Duck-Hyun;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • This study investigated the microstructure properties of A356 and AC8A alloys with a rheocasting mold using an inclined cooling plate. In addition, a formability evaluation was performed according to the solid fraction. Regardless of the position, the overall microstructure was shown to be uniform and a finer crystal structure was obtained as the solid fraction increased. The study confirmed that the molding pattern changed according to the solid fraction and that the spherical α-Al and eutectic α were identified. The results of the formability according to the solid fraction of A356 and AC8A alloys were similar to the simulation results.

Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems (하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구)

  • Oh, Hyunjong;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

The Effect of Operating Conditions on the Frost Formation in a Vertical Plate at a Low Temperature (저온 수직평판에서 착상에 대한 운전조건의 영향)

  • 이관수;이태희;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3305-3314
    • /
    • 1994
  • In this study, the influence of a frost formed on the vertical plate for different operating conditions(the temperature of the air, the humidity of the air, the velocity of the air, and the temperature of the cooling plate) is investigated. The performance of the heat exchanger is examined by introducing a parameter such as the energy transfer resistance. Correlations which relate frost density, frost thickness and energy transfer resistance to Reynolds number, air temperature and humidity, and cooling plate temperature are developed. Static pressure drop and air flow rate are expressed as a function of free flow area of air.

Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect (코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상)

  • Kim, Gi Mun;Kim, Ye Jee;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.5-10
    • /
    • 2017
  • In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with $30^{\circ}$ and $45^{\circ}$ angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of $30^{\circ}$ angled slot was higher than that of $45^{\circ}$ angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the $30^{\circ}$ angled slot. On the other hand, for the $45^{\circ}$ angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

A Design of the Cooling Channel in the Bipolar Plate of PEMFC Using Experimental Design Method (실험설계법을 이용한 연료전지 분리판 냉각채널 설계)

  • Zhang, Xia;Kwon, Oh-Jung;Oh, Byeong Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.545-552
    • /
    • 2015
  • The heat generation in PEMFC is proportional to the electrical power output. Therefore, when the fuel cell produced the maximum output, the maximum heat was generated. In order to maintain the performance of the fuel cell, thermal management is as important as pressure and humidity conditions of the reactive gas. In this study, considering the thermal management for the maximum output operation, the optimal cooling channel design specifications of bipolar plate are found for the highest cooling performance. In the current bipolar plate research, many studies focused on analyzing various factors individually but there is no more study on the interaction between design factors. In this study, the heat transfer was simulated by COMSOL Multiphysics with the main design factors which are designated shape, width and rib length. One of the experimental design methods, general full factorial design method, was used to analyze the main factor and interaction on average temperature and maximum temperature for the design specification of fuel cell bipolar plate. When analysis result shows that all of these three factors are highly important, it can confirm that the interaction occurs between the factors.