• Title/Summary/Keyword: Cooling Die

Search Result 179, Processing Time 0.028 seconds

Numerical Analysis of CO2-Based Rapid Mold Cooling Technology (CO2 기반 금형 급속 냉각기술의 수치해석적 연구 )

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we developed a simulation methodology for a technology that rapidly cools molds by directly spraying them with CO2 in its liquefied gaseous state. Initially, a simulation verification process was conducted using ANSYS Fluent's heat transfer analysis based on temperature values measured in prior research experiments, ensuring a comparable temperature could be calculated. Subsequently, the validated analysis method was employed to evaluate design factors that exert the most significant influence on cooling. An evaluation was conducted based on three factors: part thickness, mold thickness, and the melting temperature of material. Using a full factorial design approach, a total of 27 analyses were completed and subsequently calculated through analysis of means. The impact assessment was carried out based on the temperature values at the product's core. The results indicated that the thickness of the mold had the highest influence, while the melting temperature of material had the least.

The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels

  • Sulowski, Maciej;Cias, Andrzej;Frydrych, Hanna;Frydrych, Jerzy;Olszewska, Irena;Golen, Ryszard;Sowa, Marek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.563-564
    • /
    • 2006
  • The effect of different cooling rate on the structure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at $1120^{\circ}C$ and $1250^{\circ}C$ in $H_2/N_2$ atmospheres and cooled with cooling rates $1.4^{\circ}C/min$ and $6.5^{\circ}C/min$. Convective cooled specimens were subsequently tempered at $200^{\circ}C$ for 60 and 240 minutes.

  • PDF

A Study on the Dieless Wire Drawing Using Microwave (마이크로웨이브를 이용한 Dieless Wire Drawing 에 대한 연구)

  • Huh You;Kim S.H.;Kim J.S.;Kim I.S.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.942-945
    • /
    • 2005
  • Micron-sized metal wires are widely used in industries such as filtration, catalyst and composite materials, etc. In the wire drawing process, the die that is used conventionally is an effective and, at the same time, sensitive component. However, a typical array of the dies has caused many problems in the wire drawing process, e.g., large frictional force on the interface between wire and the resulting high heat generation, precise adjustment of the dies, extended cooling system, die abrasion, etc.. Because of these problems, there have been many works that are aiming at improving the efficiency of wire drawing process by analyzing the die geometry and by applying advanced die material to prolong the die life or even at developing a dieless wire drawing system. This paper is dealing with developing a new wire drawing system that is applicable to reduce the wire drawing steps with high draw ratio. The new wire drawing system does not use the dies, but use the self-induced heater that works on the basis of the resonant phenomenon of wire material. The electromagnetic wave is the heating source. The results of the study on the diameter reduction and microwave flow analysis show that the heating effectiveness of the wire is influenced by the energy distribution in the microwave propagation chamber. We can obtain diameter-reduced wires by using microwave in the dieless drawing process. Microwave as a heating source is capable of producing wires without applying dies in wire drawing process.

  • PDF

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Kim, Soon-Kook;Jang, Chang-Woo;Lee, Jun-Hee;Jung, Chan-Hoi;Seo, Yong-Gwon;Kang, Choong-Gil
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.516-523
    • /
    • 2006
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automobile industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die-casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. In this study, step-dies and flowability tests for AM50 were performed by die-casting process according to various combination of casting pressure and plunger velocity. We were discussed to velocity effect of forming conditions followed by results of microstructure, FESEM-EDX, hardness and tensile strength. Experimental results represented that the conditions of complete filling measured die-casting pressure 400 bar, 1st plunger velocity 1.0 m/s and 2nd plunger velocity 6.0 m/s. The increasing of 2nd plunger velocity 4.0 to 7.0 m/s decreased average grain size of $\alpha$ phase and pore. It was due to rapid filling of molten metal, increasing of cooling rate and pressure followed by increased 2nd plunger velocity. The pressure should maintain until complete solidification to make castings of good quality, however, the cracks were appeared at pressure 800bar over.

A study on light weighted injection molding technology and warpage reduction for lightweight automotive head lamp parts (자동차 헤드램프 부품의 경량화 사출 성형기술 및 변형 저감에 관한 연구)

  • Jeong, Eui-Chul;Son, Jung-Eon;Min, Sung-Ki;Kim, Jong-Heon;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, micro cellular injection molding of automobile head lamp housing with uneven thickness structure was performed to obtain improvement on deformation and light-weight of the part. The thickness of the presented model was uniformly modified to control the deformation of the molded part. In order to maximize the lightweight ratio, the model having an average thickness of 2.0 mm were thinly molded to an average thickness of 1.6 mm. GFM(Gas Free Molding) and CBM(Core Back Molding) technology were applied to improve the problems of the conventional foam molding method. Equal Heat & Cool system was also applied by 3D cooling core and individual flow control system. Warpage of the molded parts with even cooling was minimized. To improve the mechanical properties of foamed products, complex resin containing nano-filler was used and variation of mechanical properties was evaluated. It was shown that the weight reduction ratio of products with light-weighted injection molding was 8.9 % and the deformation of the products was improved from the maximum of 3.6 mm to 2.0 mm by applying Equal Heat & Cool mold cooling system. Also the mechanical strength reduction of foamed product was less than 12% at maximum.

A study on thermal fluid analysis in X-ray tube for non-fire alarm (비화재보를 위한 X-ray tube 내 열 유동해석에 관한 연구)

  • Yun, Dong-Min;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • Currently, Korea is an aging society, and it is expected to enter a super-aging society in about 4 years. Accordingly, many X-ray technologies are being developed. In X-rays, 99% of X-rays are converted into heat energy and 1% into light energy (X-rays). 99% of the thermal energy raises the temperature of the anode and its surroundings, and the cooling system is an important factor as overheating can affect the deterioration of X-ray quality and shortened lifespan. There is a method of forced air cooling using natural convection. Therefore, in this study, when X-rays were taken 5 times, Flow analysis was performed on heat removal according to temperature rise and cooling time for the heat generated at the anode of the X-ray tube (input power 60kW, 75kW, 90kW). Based on one-shot, the most rapid temperature rise section increased by more than 57% to 0.03 seconds, A constant temperature rises from 0.03 seconds to 0.1 seconds, It is judged that the temperature rises by about 8.2% or more at one time. After one-shot cooling, the cooling drops sharply from about 60% to 0.03 seconds, It is judged that the temperature has cooled by more than 86% compared to the temperature before shooting. One-shot is cooled by more than 86% with cooling time after 0.1 seconds, As the input power of the anode increases, the cooling temperature gradually increases. Since the tungsten of the anode target inside the X-ray tube may be damaged by thermal shock caused by a rapid temperature rise, an improvement method for removing thermal energy is required when using a high-input power supply.

A Study on the Cooling Parameter Decision of Linear Motor System by Finite Volume Method (유한체적법을 이용한 리니어모터 시스템의 냉각조건 선정에 관한 연구)

  • Hwang Y.K.;Eun I.E.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.449-450
    • /
    • 2006
  • Development of a feed drive system with high speed, positioning accuracy and thrust has been an important issue in modern automation systems and machine tools. Linear motors can be used as an efficient system to achieve such technical demands. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speeds and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper presents an investigation into a thermal behavior of linear motor cooling plate. FVM employed to analyze the thermal behavior of the linear motor cooling plate, using the ANSYS-CFX.

  • PDF

A Study on the 3D Injection Mold Design Using CATIA API (CATIA API를 이용한 사출 금형의 3차원 설계에 관한 연구)

  • 박주삼;김재현;박정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.115-125
    • /
    • 2003
  • The design methodology of plastic injection molding die has been gradually moved from two-dimensional line drawings to three-dimensional solid models. The 3D design gives many benefits, a few of which are: ease of design change, data associativity from concept design to final assembly. In the paper represented is the implementation of a program which automatically generates 3D mold-bases and cooling-lines, conforming to given geometric constraints. It utilized a commercial CAD software and the related API(application program interface) libraries. We constructed a DB(database) of typical mold-bases assembled from standard parts, from which the geometry (position & dimension) of a mold-base and composed parts can be automatical]y determined by a few key parameters. Also we classified cooling lines into several typical types and constructed a DB, from which the position of cooling lines is automatically determined. The research is expected not only to simplify construction of a 3D mold-base model including cooling lines but also to reduce design efforts, by way of databases and automatized determination of geometric dimensions.

Microstructure and Mechanical Properties of Hot-Stamped 3.2t Boron Steels according to Water Flow Rate in Direct Water Quenching Process (3.2t 보론강 판재 직수냉각 핫스탬핑시 냉각수 유량에 따른 미세조직 및 기계적 특성)

  • Park, Hyeon Tae;Kwon, Eui Pyo;Im, Ik Tae
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.693-700
    • /
    • 2020
  • Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.

Thermal analysis model for electric water pumps with non-conductive cooling liquid (비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델)

  • Jung, Sung-Taek;Yoon, Seon-Jhin;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.