• Title/Summary/Keyword: Coolant Flow Channel

Search Result 81, Processing Time 0.025 seconds

Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding (사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향)

  • Choi, Kye-Kwang;Hong, Seok-Moo;Han, Seong-Ryeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

Reflood Experiments with Horizontal and Vertical Flow Channels

  • Chung, Moon-Ki;Lee, Seung-Hyuck;Park, Choon-Kyung;Lee, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.153-162
    • /
    • 1980
  • The investigation of the fuel cladding temperature behavior and heat transfer mechanism during the reflooding phase of a LOCA plays an important role in performance evaluation of ECCS and safety analysis of water reactors. Reflooding experiments were performed with horizontal and vertical flow channels to investigate the effect of coolant flow channel orientation on rewetting process. Emphasis was mainly placed on the CANDU reactor which has horizontal pressure tubes in core, and the results were compared with those of vertical channel. Also to investigate the rewetting process visually, the experiments by using a rod in annulus and a quartz tube heated outside were performed. It can be concluded that the rewetting velocity in horizontal flow channel is clearly affected by flow stratification, however, the average rewetting velocity is similar to those in vertical flow channel for same conditions.

  • PDF

Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop (자연순환 루프에서 이상유동 특성에 관한 예비실험 연구)

  • Kim, Jae-Cheol;Ha, Kwang-Soon;Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

Study on the effect of flow blockage due to rod deformation in QUENCH experiment

  • Gao, Pengcheng;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3154-3165
    • /
    • 2022
  • During a loss-of-coolant accident (LOCA) in the pressurized water reactor (PWR), there is a possibility that high temperature and internal pressure of the fuel rods lead to ballooning of the cladding, which causes a partial blockage of flow area in a subchannel. Such flow blockage would influence the core coolant flow, thus affecting the core heat transfer during a reflooding phase and subsequent severe accident. However, most of the system analysis codes simulate the accident process based on the assumed channel blockage ratio, resulting in the fact that the simulation results are not consistent with the actual situation. This paper integrates the developed core Fuel Rod Thermal-Mechanical Behavior analysis (FRTMB) module into the self-developed severe accident analysis code ISAA. At the same time, the existing flow blockage model is improved to make it possible to simulate the change of flow distribution due to fuel rod deformation. Finally, the ISAA-FRTMB is used to simulate the QUENCH-LOCA-0 experiment to verify the correctness and effectiveness of the improved flow blockage model, and then the effect of clad ballooning on core heat transfer and subsequent parts of core degradation is analyzed.

Dynamic Characteristic and Fault Analysis of the CANDU Nuclear Fuel Channel (CANDU 핵연료 채널에 대한 동특성 및 결함증상 해석)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.345-349
    • /
    • 2003
  • The dynamic behavior of CANDU nuclear fuel channel was analyzed by the use of 3-dimensional finite element method, under the various fault conditions such as a fault in the end fitting support and the removal/migration of the garter spring in the fuel channel, in order to predict the dynamic behavior for a degraded symptoms of CANDU nuclear fuel channel. Moreover, the frequency response analysis for possible fault conditions was also peformed considering the effects of the pressure tube vibration and flow-induced vibration by the coolant flow. From the analysis of the frequency responses, defects in the garter spring have influenced the changes of 2nd and 3rd modes and all the important modes are varied for the failure in the journal bearing in the end fitting body.

  • PDF

1-D Two-phase Flow Investigation for External Reactor Vessel Cooling (원자로 용기 외벽냉각을 위한 1차원 이상유동 실험 및 해석)

  • Kim, Jae-Cheol;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Sin;Ha, Kwang-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.482-490
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

Experimental Study on Heat Transfer Characteristics of Jet A-1 Fuel (Jet A-1 연료의 열전달 특성에 관한 실험적 연구)

  • Lee, Junseo;Lee, Bom;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.1-12
    • /
    • 2020
  • In this paper, the heat transfer characteristics of Jet A-1, which is used as a coolant and fuel in a regeneratively cooled thrust chamber, were experimentally studied. By varying the applied current for heating the cooling channel, the simulated specimen diameter, the specimen outlet pressure and the coolant flow rate, the wall temperatures of the specimen and the Jet A-1 temperatures at the specimen inlet/outlet were measured. It was found that the specimen diameter and the flow rate were important factors for the characteristics of heat transfer and the outlet pressure did not affect the performance of heat transfer. The results of the heat transfer experiments were compared with the previous Nusselt number empirical equations and novel Nusselt number empirical equations were finally derived.

Computational Fluid Dynamics Study on Uniform Cooling of Polymer Electrolyte Membrane Fuel Cells by Parallel Multi-pass Serpentine Flow Fields (병렬 사형유로를 채택한 냉각판을 통한 고분자 전해질 연료전지의 균일 냉각에 대한 전산유체역학 해석 연구)

  • Yu, Seung-Ho;Baek, Seung-Man;Nam, Jin-Hyun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.885-891
    • /
    • 2010
  • Thermal management is important for enhancing the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) and is taken into account in the design of PEMFCs. In general, cooling pates with circulating liquid coolant (water) are inserted between several unit cells to exhaust the reaction heat from PEMFCs. In this study, computational fluid dynamics (CFD) simulations were performed to characterize the uniform cooling performance of parallel multipass serpentine flow fields (MPSFFs) that were used as coolant flow channels in PEMFCs. The cooling performances of conventional serpentine and parallel flow fields were also evaluated for the purpose of comparison. The CFD results showed that the use of parallel MPSFFs can help reduce the temperature nonuniformity, and thus, can favorably enhance the performance and durability of PEMFCs.