• 제목/요약/키워드: Convolutional block attention module

검색결과 6건 처리시간 0.017초

합성 블록 어텐션 모듈을 이용한 운동 동작 인식 성능 분석 (Performance Analysis of Exercise Gesture-Recognition Using Convolutional Block Attention Module)

  • 경찬욱;정우용;선준호;선영규;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.155-161
    • /
    • 2021
  • 최근, 실시간으로 카메라를 통해 동작을 인식하는 기술의 연구가 많이 진행되고 있다. 기존의 연구들에서는 사람의 관절로부터 특징을 추출하는 개수가 적기 때문에 동작 분류의 정확도가 낮은 한계점들이 있다. 본 논문에서는 이러한 한계점들을 해결하기 위해 움직일 때 변하는 관절의 각도를 특징 추출하여 계산하는 알고리즘과 이미지 분류 시에 정확도가 높은 CBAM(Convolutional Block Attention Module)을 사용한 분류모델을 제안한다. AI Hub에서 제공하는 피트니스 자세 이미지로부터 5가지 운동 동작 이미지를 인용하여 분류 모델에 적용한다. 구글에서 제공하는 그래프 기반 프레임워크인 MediaPipe 기법을 사용하여, 이미지로부터 운동 동작 분류에 중요한 8가지 관절 각도 정보를 추가적으로 추출한다. 추출한 특징들을 모델의 입력으로 설정하여, 분류 모델을 학습시킨다. 시뮬레이션 결과로부터 제안한 모델은 높은 정확도로 운동 동작을 구분하는 것을 확인할 수 있다.

개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할 (Semantic Building Segmentation Using the Combination of Improved DeepResUNet and Convolutional Block Attention Module)

  • 예철수;안영만;백태웅;김경태
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1091-1100
    • /
    • 2022
  • 딥러닝 기술의 진보와 함께 다양한 국내외 고해상도 원격탐사 영상의 활용이 가능함에 따라 딥러닝 기술과 원격탐사 빅데이터를 활용하여 도심 지역 건물 검출과 변화탐지에 활용하고자 하는 관심이 크게 증가하고 있다. 본 논문에서는 고해상도 원격탐사 영상의 의미론적 건물 분할을 위해서 건물 분할에 우수한 성능을 보이는 DeepResUNet 모델을 기본 구조로 하고 잔차 학습 단위를 개선하고 Convolutional Block Attention Module(CBAM)을 결합한 새로운 건물 분할 모델인 CBAM-DRUNet을 제안한다. 제안한 건물 분할 모델은 WHU 데이터셋과 INRIA 데이터셋을 이용한 성능 평가에서 UNet을 비롯하여 ResUNet, DeepResUNet 대비 F1 score, 정확도, 재현율 측면에서 모두 우수한 성능을 보였다.

A Framework for Facial Expression Recognition Combining Contextual Information and Attention Mechanism

  • Jianzeng Chen;Ningning Chen
    • Journal of Information Processing Systems
    • /
    • 제20권4호
    • /
    • pp.535-549
    • /
    • 2024
  • Facial expressions (FEs) serve as fundamental components for human emotion assessment and human-computer interaction. Traditional convolutional neural networks tend to overlook valuable information during the FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deep learning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanism for precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone network and introduced an improved group convolutional channel attention (GCCA) module in each block to emphasize the crucial expression features. A partial decoder was added at the end of the backbone network to facilitate the fusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the model to refine details layer-by-layer while introducing contextual information and extracting richer expression features. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss, creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectiveness of our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and 98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability.

CT 영상에서 폐 결절 분할을 위한 경계 및 역 어텐션 기법 (Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images)

  • 황경연;지예원;윤학영;이상준
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.265-272
    • /
    • 2022
  • As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.