Browse > Article
http://dx.doi.org/10.14372/IEMEK.2022.17.5.265

Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images  

Hwang, Gyeongyeon (Jeonbuk National University)
Ji, Yewon (Jeonbuk National University)
Yoon, Hakyoung (Jeonbuk National University)
Lee, Sang Jun (Jeonbuk National University)
Publication Information
Abstract
As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.
Keywords
CT image analysis; Lung nodule; Small object detection; Attention mechanism;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Z. Niu, G. Zhong, H. Yu, "A Review on the Attention Mechanism of Deep Learning," Neurocomputing, Vol. 452, pp. 48-62, 2021.   DOI
2 O. Ronneberger, P. Fischer, T. Brox, "U-net: Convolutional Networks for Biomedical Image Segmentation," Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234-241, 2015.
3 S. Chen, X. Tan, B. Wang, X. Hu, "Reverse Attention for Salient Object Detection," Proceedings of the European Conference on Computer Vision, pp. 234-250, 2018.
4 S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. Kazerooni, H. MacMahon, E. J. Van Beeke, D. Yankelevitz, A. M. Biancardi, P. H. Bland, M. S. Brown, R. M. Engelmann , G. E. Laderach, D. Max, R. C. Pais, D. P. Qing, R. Y. Roberts, A. R. Smith, A. Starkey, P. Batrah, P. Caligiuri, A. Farooqi, G. W. Gladish, C. M. Jude, R. F. Munden, I. Petkovska, L. E. Quint, L. H. Schwartz, B. Sundaram, L. E. Dodd, C. Fenimore, D. Gur, N. Petrick, J. Freymann, J. Kirby, B. Hughes, A. V. Casteele, S. Gupte, M. Sallamm, M. D. Heath, M. H Kuhn, E. Dharaiya, R. Burns, D. S. Fryd, M. Salganicoff, V. Anand, U. Shreter, S. Vastagh, B. Y. Croft, "The lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a Completed Reference Database of lung Nodules on CT Scans," Medical Physics, Vol. 38, No. 2, pp. 915-931, 2011.
5 J. Y. Sun, S. W. Kim, S. W. Lee, Y. W. Kim, S. J. Ko, "Reverse and Boundary Attention Network for Road Segmentation," Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
6 T. C. Nguyen, T. P. Nguyen, G. H. Diep, A. H. Tran-Dinh, T. V. Nguyen, M. T. Tran, "Ccbanet: Cascading Context and Balancing Attention for Polyp Segmentation," Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 633-643, 2021.
7 S. Jadon, "A Survey of loss Functions for Semantic Segmentation," Proceedings of IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1-7, 2020.
8 K. H. Zou, S. K. Warfield, A. Bharatha, C. M. Tempany, M. R. Kaus, S. J. Haker, W. M. Wells III, F. A. Jolesz, R. Kikinis, "Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1: Scientific Reports," Academic Radiology, Vol. 11, No. 2, pp. 178-189, 2004.   DOI
9 J. Davis, M. Goadrich, "The Relationship Between Precision-Recall and ROC Curves," Proceedings of International Conference on Machine Learning, pp. 233-240, 2006.
10 S. Woo, J. Park, J. Y. Lee, I. S. Kweon, "Cbam: Convolutional Block Attention Module," Proceedings of the European Conference on Computer Vision, pp. 3-19, 2018.
11 J. Shore, R. Johnson, "Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-entropy," IEEE Transactions on Information Theory, Vol. 26, No. 1, pp. 26-37, 1980.   DOI
12 F. Milletari, N. Navab, S. A. Ahmadi, "V-net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation," Proceedings of International Conference on 3D Vision, pp. 565-571, 2016.
13 G. N. Hounsfield, "Computed Medical Imaging," Science, Vol. 210, No. 4465, pp. 22-28, 1980.   DOI
14 U. Schneider, E. Pedroni, A. Lomax, "The Calibration of CT Hounsfield Units for Radiotherapy Treatment Planning," Physics in Medicine & Biology, Vol. 41, No. 1, pp. 111, 1996.   DOI
15 A. Fajar, R. Sarno, C. Fatichah, A. Fahmi, "Reconstructing and Resizing 3D Images from DICOM Files," Journal of King Saud University-Computer and Information Sciences, 2020.
16 R. L. Draelos, D. Dov, M. A. Mazurowski, J. Y. Lo, R. Henao, G. D. Rubin, L. Carin, "Machine-learning-based Multiple Abnormality Prediction with Large-scale Chest Computed Tomography Volumes," Medical Image Analysis, Vol. 67, No. 101857, 2021.
17 E. J. Stern, M. S. Frank, J. D. Godwin, "Chest Computed Tomography Display Preferences. Survey of Thoracic Radiologists," Investigative Radiology, Vol. 30, No. 9, pp. 517-521, 1995.   DOI
18 J. Hu, L. Shen, G. Sun, "Squeeze-and-excitation Networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132-7141, 2018.
19 O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, M. Kensakui, M. D. Steven, Y. H. Nils, K. Bernhard, G. Ben, R. Daniel, "Attention u-net: Learning where to look for the Pancreas" arXiv preprint arXiv:1804.03999, 2018.
20 J. Park, S. Woo, J. Y. Lee, I. S. Kweon, "Bam: Bottleneck Attention Module," arXiv preprint arXiv:1807.06514, 2018.
21 L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, "Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected crfs," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 40, No. 4, pp. 834-848, 2017.
22 S. Y, Lee, "컴퓨터도움진단 (Computer-Aided Diagnosis) 기술," 전기의세계, Vol. 60 No. 7, pp. 59-64, 2011.
23 A. McWilliams, M. C. Tammemagi, J. R. Mayo, H. Roberts, G. Liu, K. Soghrati, K. Yasufuku, S. Martel, F. Laberge, M. Gingras, S. Atkar-Khattra, C. D. Berg, K. Evans, R. Finley, J. Yee, J. English, P. Nasute, J. Goffin, S. Puksa, L. Stewart, S. Tsai, M. R. Johnston, D. Manos, G. Nicholas, G. D. Goss, J. M. Seely, K. Amjadi, A. Tremblay, P. Burrowes, P. MacEachern, R. Bhatia, M. S. Tsao, S. Lam, "Probability of Cancer in Pulmonary Nodules Detected on First Screening CT," New England Journal of Medicine, Vol. 369, No. 10, pp. 910-919, 2013.