• Title/Summary/Keyword: Convolutional Neural Networks

Search Result 666, Processing Time 0.031 seconds

Predicting Employment Earning using Deep Convolutional Neural Networks (딥 컨볼루션 신경망을 이용한 고용 소득 예측)

  • Ramadhani, Adyan Marendra;Kim, Na-Rang;Choi, Hyung-Rim
    • Journal of Digital Convergence
    • /
    • v.16 no.6
    • /
    • pp.151-161
    • /
    • 2018
  • Income is a vital aspect of economic life. Knowing what their income will help people create budgets that allow them to pay for their living expenses. Income data is used by banks, stores, and service companies for marketing purposes and for retaining loyal customers; it is a crucial demographic element used at a wide variety of customer touch points. Therefore, it is essential to be able to make income predictions for existing and potential customers. This paper aims to predict employment earnings or income based on history, and uses machine learning techniques such as SVMs (Support Vector Machines), Gaussian, decision tree and DCNNs (Deep Convolutional Neural Networks) for predicting employment earnings. The results show that the DCNN method provides optimum results with 88% compared to other machine learning techniques used in this paper. Improvement of the data length such PCA has the potential to provide more optimum result.

Optimizing Image Size of Convolutional Neural Networks for Producing Remote Sensing-based Thematic Map

  • Jo, Hyun-Woo;Kim, Ji-Won;Lim, Chul-Hee;Song, Chol-Ho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.661-670
    • /
    • 2018
  • This study aims to develop a methodology of convolutional neural networks (CNNs) to produce thematic maps from remote sensing data. Optimizing the image size for CNNs was studied, since the size of the image affects to accuracy, working as hyper-parameter. The selected study area is Mt. Ung, located in Dangjin-si, Chungcheongnam-do, South Korea, consisting of both coniferous forest and deciduous forest. Spatial structure analysis and the classification of forest type using CNNs was carried in the study area at a diverse range of scales. As a result of the spatial structure analysis, it was found that the local variance (LV) was high, in the range of 7.65 m to 18.87 m, meaning that the size of objects in the image is likely to be with in this range. As a result of the classification, the image measuring 15.81 m, belonging to the range with highest LV values, had the highest classification accuracy of 85.09%. Also, there was a positive correlation between LV and the accuracy in the range under 15.81 m, which was judged to be the optimal image size. Therefore, the trial and error selection of the optimum image size could be minimized by choosing the result of the spatial structure analysis as the starting point. This study estimated the optimal image size for CNNs using spatial structure analysis and found that this can be used to promote the application of deep-learning in remote sensing.

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms

  • Seo, Chan-Yang;Suh, Young-Joo;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2020
  • In this paper, we propose a machine learning method for diagnosing the failure of a gas pressure regulator. Originally, when implementing a machine learning model for detecting abnormal operation of a facility, it is common to install sensors to collect data. However, failure of a gas pressure regulator can lead to fatal safety problems, so that installing an additional sensor on a gas pressure regulator is not simple. In this paper, we propose various machine learning approach for diagnosing the abnormal operation of a gas pressure regulator with only the flow rate and gas pressure data collected from a gas pressure regulator itself. Since the fault data of a gas pressure regulator is not enough, the model is trained in all classes by applying the over-sampling method. The classification model was implemented using Gradient boosting, 1D Convolutional Neural Networks, and LSTM algorithm, and gradient boosting model showed the best performance among classification models with 99.975% accuracy.

Real-time Wave Overtopping Detection and Measuring Wave Run-up Heights Based on Convolutional Neural Networks (CNN) (합성곱 신경망(CNN) 기반 실시간 월파 감지 및 처오름 높이 산정)

  • Seong, Bo-Ram;Cho, Wan-Hee;Moon, Jong-Yoon;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.243-250
    • /
    • 2022
  • The purpose of this study was to propose technology to detect the wave in the image in real-time, and calculate the height of the wave-overtopping through image analysis using artificial intelligence. It was confirmed that the proposed wave overtopping detection system proposed in this study could detect the occurring of wave overtopping, even in severe weather and at night in real-time. In particular, a filtering algorithm for determining if the wave overtopping event was used, to improve the accuracy of detecting the occurrence of wave overtopping, based on a convolutional neural networks to catch the wave overtopping in CCTV images in real-time. As a result, the accuracy of the wave overtopping detection through AP50 was reviewed as 59.6%, and the speed of the overtaking detection model was 70fps based on GPU, confirming that accuracy and speed are suitable for real-time wave overtopping detection.

A Facial Expression Recognition Method Using Two-Stream Convolutional Networks in Natural Scenes

  • Zhao, Lixin
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.399-410
    • /
    • 2021
  • Aiming at the problem that complex external variables in natural scenes have a greater impact on facial expression recognition results, a facial expression recognition method based on two-stream convolutional neural network is proposed. The model introduces exponentially enhanced shared input weights before each level of convolution input, and uses soft attention mechanism modules on the space-time features of the combination of static and dynamic streams. This enables the network to autonomously find areas that are more relevant to the expression category and pay more attention to these areas. Through these means, the information of irrelevant interference areas is suppressed. In order to solve the problem of poor local robustness caused by lighting and expression changes, this paper also performs lighting preprocessing with the lighting preprocessing chain algorithm to eliminate most of the lighting effects. Experimental results on AFEW6.0 and Multi-PIE datasets show that the recognition rates of this method are 95.05% and 61.40%, respectively, which are better than other comparison methods.

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network (합성곱 신경망 기반 저조도영상의 반사 영상 생성)

  • Lee, Seungsoo;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.623-632
    • /
    • 2019
  • Many researches have been carried out for brightness and contrast enhancement, illumination reduction and so forth. Recently, the aforementioned hand-crafted approaches have been replaced by artificial neural networks. This paper proposes a convolutional neural network that can replace the method of generating a reflectance image where illumination component is attenuated. Experiments are carried out on 102 low-light images and we validate the feasibility of the replacement by producing satisfactory reflectance images.

Preprocessing performance of convolutional neural networks according to characteristic of underwater targets (수중 표적 분류를 위한 합성곱 신경망의 전처리 성능 비교)

  • Kyung-Min, Park;Dooyoung, Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.629-636
    • /
    • 2022
  • We present a preprocessing method for an underwater target detection model based on a convolutional neural network. The acoustic characteristics of the ship show ambiguous expression due to the strong signal power of the low frequency. To solve this problem, we combine feature preprocessing methods with various feature scaling methods and spectrogram methods. Define a simple convolutional neural network model and train it to measure preprocessing performance. Through experiment, we found that the combination of log Mel-spectrogram and standardization and robust scaling methods gave the best classification performance.

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF