• 제목/요약/키워드: Convolutional Neural Network

검색결과 1,569건 처리시간 0.024초

계층적 CNN 구조를 이용한 스테가노그래피 식별 (Identification of Steganographic Methods Using a Hierarchical CNN Structure)

  • 강상훈;박한훈;박종일;김산해
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.205-211
    • /
    • 2019
  • 스테그아날리시스(steganalysis)는 스테가노그래피(steganography)에 의해 숨겨진 데이터를 감지하고 복구하기 위한 기법이다. 스테그아날리시스 방법은 데이터 삽입 시 발생하는 시각적, 통계적 변화를 분석하여 숨겨진 데이터를 찾는다. 숨겨진 데이터를 복원하기 위해서는 어떤 스테가노그래피 방법에 의해 데이터가 숨겨졌는지를 알아야 한다. 그러므로 본 논문은 다층 분류를 통해 입력 영상에 적용된 스테가노그래피 방법을 식별하는 계층적 CNN 구조를 제안한다. 이를 위해 4개의 기본 CNN을 각각 입력 영상에 스테가노그래피 방법이 적용되었는지 여부나 서로 다른 두 스테가노그래피 방법 중에 어떤 방법이 적용되었는지를 이진 판별하도록 학습시켰으며, 학습된 CNN을 계층적으로 연결하였다. 실험 결과를 통해 제안된 계층적 CNN 구조는 4개의 서로 다른 스테가노그래피 방법인 LSB(Least Significant Bit Substitution), PVD(Pixel Value Difference), WOW(Wavelet Obtained Weights), UNIWARD(Universal Wavelet Relative Distortion)을 79%의 정확도로 식별할 수 있음을 확인하였다.

딥러닝을 이용한 WTCI 설태량 평가를 위한 유효성 검증 (An Effectiveness Verification for Evaluating the Amount of WTCI Tongue Coating Using Deep Learning)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.226-231
    • /
    • 2019
  • 한방 설진에서 WTCI(Winkel Tongue Coating Index) 설태 평가는 환자의 설태량 측정을 위한 중요한 객관적인 지표 중의 하나이다. 그러나 이전의 WTCI 설태 평가는 혀영상으로부터 설태 부분을 추출하여 전체 혀 영역에서 추출된 설태 영역의 비율을 정량적으로 측정하는 방법이 대부분으로 혀영상의 촬영 조건이나 설태 인식 성능에 의해서 비객관적 측정의 문제점이 있었다. 따라서 본 논문에서는 빅데이터를 기반으로 하는 인공지능의 딥러닝 방법을 적용하여 설태량을 분류하여 평가하는 딥러닝 기반의 WTCI 평가 방법을 제안하고 검증한다. 설태 평가 방법에 있어서 딥러닝의 유효성 검증을 위해서는 CNN을 학습 모델로 사용하여 소태, 박태, 후태의 3가지 유형의 설태량을 분류한다. 설태 샘플 영상을 학습 및 검증 데이터로 구축하여 CNN 기반의 딥러닝 모델로 학습한 결과 96.7%의 설태량 분류 정확성을 보였다.

불법 산양삼 검출을 위한 인공지능 기술에서의 산양삼과 인삼 이미지의 분류 기저화 연구 (A Study on Basalization of the Classification in Mountain Ginseng and Plain Ginseng Images in Artificial Intelligence Technology for the Detection of Illegal Mountain Ginseng)

  • 박수경;나호준;김지혜
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.209-225
    • /
    • 2020
  • 본 연구는 인삼과 산양삼에 대해 아무런 정보가 없는 초보 소비자가 인삼을 산양삼이라 여기는 사기 상황을 방지하는 차원에서 산양삼 형태에 대한 기저수준을 확립하려했다. 이를 위해 연구자들은 소비자가 스마트폰의 전용 APP으로 인삼을 촬영하면 그 사진이 원격으로 전송되어, 기계학습데이터를 기반으로 판별한 결과가 소비자에게 전송되는 서비스디자인을 고안했다. 연구과정에서의 데이터 셋과 소비자들이 스마트폰을 통해 촬영했을 때의 배경색, 산양삼의 위치, 크기, 조도, 색온도 등과의 차이를 최소화 하기 위해 소비자 용 전용 촬영 박스를 디자인 했다. 이에 따라 산양삼 샘플 수집은 디자인된 박스와 동일한 통제된 환경과 세팅 하에서 이루어졌다. 이를 통해 기계학습에서 통상 필요한 것 보다 약 1/10이 적은 샘플을 사용해 CNN(VGG16)모델에서 예측 확율 100%를 얻었다.

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • 농업과학연구
    • /
    • 제47권3호
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

적외선 영상에서의 표적과 클러터 구분을 위한 Hybrid Machine Character 기반의 Du-CNN 설계 (A Design of Du-CNN based on the Hybrid Machine Characters to Classify Target and Clutter in The IR Image)

  • 이주영;임재완;백하은;김춘호;박정수;고은진
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.758-766
    • /
    • 2017
  • In this paper, we propose a robust duality of CNN(Du-CNN) method which can classify the target and clutter in coastal environment for IR Imaging Sensor. In coastal environment, there are various clutter that have many similarities with real target due to diverse change of air temperature, water temperature, weather and season. Also, real target have various feature due to the same reason. Thus, the proposed Du-CNN method adopts human's multiple personality utilization and CNN technique to learn and classify target and clutter. This method has an advantage of the real time operation. Experimental results on sampled dataset of real infrared target and clutter demonstrate that the proposed method have better success rate to classify the target and clutter than general CNN method.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

딥러닝 기반 카메라 모델 판별 (Camera Model Identification Based on Deep Learning)

  • 이수현;김동현;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권10호
    • /
    • pp.411-420
    • /
    • 2019
  • 멀티미디어 포렌식 분야에서 영상을 촬영한 카메라 모델 판별을 위한 연구가 지속되어 왔다. 점점 고도화되는 범죄 중에 불법 촬영 등의 범죄는 카메라가 소형화됨에 따라 피해자가 알아차리기 어렵기 때문에 높은 범죄 발생 건수를 차지하고 있다. 따라서 특정 영상이 어느 카메라로 촬영되었는지를 특정할 수 있는 기술이 사용된다면 범죄자가 자신의 범죄 행위를 부정할 때, 범죄 혐의를 입증할 증거로 사용될 수 있을 것이다. 본 논문에서는 영상을 촬영한 카메라 모델 판별을 위한 딥러닝 모델을 제안한다. 제안하는 모델은 4개의 컨볼루션 계층과 2개의 전연결 계층으로 구성되었으며, 데이터 전처리를 위한 필터로 High Pass Filter를 사용하였다. 제안한 모델의 성능 검증을 위하여 Dresden Image Database를 활용하였고, 데이터셋은 순차분할 방식을 적용하여 생성하였다. 제안하는 모델을 3 계층 모델과 GLCM 적용 모델 등 기존 연구들과 비교 분석을 수행하여 우수성을 보였고, 최신 연구 결과에서 제시하는 수준의 98% 정확도를 달성하였다.

Efficient Osteoporosis Prediction Using A Pair of Ensemble Models

  • Choi, Se-Heon;Hwang, Dong-Hwan;Kim, Do-Hyeon;Bak, So-Hyeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.45-52
    • /
    • 2021
  • 본 논문에서는 컴퓨터 단층촬영(CT) 이미지를 이용한 합성곱 신경망(CNN)을 기반의 골감소증 및 골다공증 예측 모델을 제안한다. 기존의 CNN은 단일 CT 이미지에서 예측에 중요한 지역정보를 활용하지 못하다는 문제가 있다. 본 논문에서 이를 해결하고자 CT 이미지를 정규화하여 질감 정보가 다른 두 개의 이미지로 변환하고, 해당 이미지를 활용한 한 쌍의 신경망 네트워크를 제안한다. 동일한 구조를 가진 네트워크 각각의 신경망은 질감 정보가 다른 이미지를 입력으로 사용하고 비유사성 손실함수를 통해 다른 정보를 학습한다. 최종적으로 제안 모델은 중요한 지역정보를 포함한 단일 CT 이미지의 다양한 특징 정보를 학습하며, 이를 앙상블하여 골감소증 및 골다공증 예측 정확도를 높인다. 실험 결과를 통해 제안 모델의 정확도 77.11%를 확인할 수 있으며 Grad-CAM을 이용하여 모델이 바라보는 특징을 확인할 수 있다.

검색 기반의 질문생성에서 중복 방지를 위한 유사 응답 검출 (Detection of Similar Answers to Avoid Duplicate Question in Retrieval-based Automatic Question Generation)

  • 최용석;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권1호
    • /
    • pp.27-36
    • /
    • 2019
  • 본 연구는 검색 기반의 질문 자동 생성 시스템에서 사용자가 이미 답변한 내용을 재질문하지 않도록 사용자의 응답과 유사도가 높은 응답을 질문-데이터베이스에서 찾는 방법을 제안한다. 유사도가 높게 검출된 응답의 질문은 이미 사용자가 아는 내용일 확률이 높기 때문에 질문 후보군에서 제거한다. 유사 응답 검출에는 두 응답간의 동일 단어, 바꿔쓰기 표현, 문장 내용을 모두 사용하였다. 바꿔쓰기 표현은 통계기반의 기계번역에서 사용하는 구절 테이블을 사용하여 구축하였다. 문장 내용은 두 문장을 주의-기반 컨볼루션 신경망으로 압축하여 유사도를 계산하였다. 평가를 위해 구축한 100개의 평가 응답에 질문-응답 데이터베이스로부터 가장 유사한 응답을 추출해서 얻은 결과는 MRR값 71%의 성능을 보였다.

어종 분류를 위한 CNN의 적용 (Application of CNN for Fish Species Classification)

  • 박진현;황광복;박희문;최영규
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.39-46
    • /
    • 2019
  • 본 연구에서 외래어종 퇴치를 위한 시스템 개발에 앞서 물 안의 어류 이미지를 CNN으로 학습하여 어종을 분류하는 알고리즘을 제안하고자 한다. CNN 학습을 위한 원데이터(raw data)는 각 어종에 대해 직접 촬영한 영상을 사용하였으며, 어종 분류성능을 높이기 위해 영상 이미지의 개수를 늘린 데이터세트 1과 최대한 자연환경과 가까운 영상 이미지를 구현한 데이터세트 2를 구성하여 학습 및 테스트 데이터로 사용하였다. 4가지 CNN의 분류성능은 데이터세트 1에 대해 99.97%, 데이터세트 2에 대해 99.5% 이상을 나타내었으며, 특히 데이터세트 2를 사용하여 학습한 CNNs이 자연환경과 유사한 어류 이미지에 대해서도 만족할 만한 성능을 가짐을 확인하였다. 그리고 4가지 CNN 중 AlexNet이 성능에서도 만족스러운 결과를 도출하였으며, 수행시간과 학습시간 역시 가장 짧아 외래어종 퇴치를 위한 시스템 개발에 가장 적합한 구조임을 확인하였다.