• Title/Summary/Keyword: Convolutional Codes

Search Result 132, Processing Time 0.021 seconds

Turbo Product Codes Based on Convolutional Codes

  • Gazi, Orhan;Yilmaz, Ali Ozgur
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.453-460
    • /
    • 2006
  • In this article, we introduce a new class of product codes based on convolutional codes, called convolutional product codes. The structure of product codes enables parallel decoding, which can significantly increase decoder speed in practice. The use of convolutional codes in a product code setting makes it possible to use the vast knowledge base for convolutional codes as well as their flexibility in fast parallel decoders. Just as in turbo codes, interleaving turns out to be critical for the performance of convolutional product codes. The practical decoding advantages over serially-concatenated convolutional codes are emphasized.

  • PDF

The Construction and Viterbi Decoding of New (2k, k, l) Convolutional Codes

  • Peng, Wanquan;Zhang, Chengchang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.69-80
    • /
    • 2014
  • The free distance of (n, k, l) convolutional codes has some connection with the memory length, which depends on not only l but also on k. To efficiently obtain a large memory length, we have constructed a new class of (2k, k, l) convolutional codes by (2k, k) block codes and (2, 1, l) convolutional codes, and its encoder and generation function are also given in this paper. With the help of some matrix modules, we designed a single structure Viterbi decoder with a parallel capability, obtained a unified and efficient decoding model for (2k, k, l) convolutional codes, and then give a description of the decoding process in detail. By observing the survivor path memory in a matrix viewer, and testing the role of the max module, we implemented a simulation with (2k, k, l) convolutional codes. The results show that many of them are better than conventional (2, 1, l) convolutional codes.

Linear Unequal Error Protection Codes based on Terminated Convolutional Codes

  • Bredtmann, Oliver;Czylwik, Andreas
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.12-20
    • /
    • 2015
  • Convolutional codes which are terminated by direct truncation (DT) and zero tail termination provide unequal error protection. When DT terminated convolutional codes are used to encode short messages, they have interesting error protection properties. Such codes match the significance of the output bits of common quantizers and therefore lead to a low mean square error (MSE) when they are used to encode quantizer outputs which are transmitted via a noisy digital communication system. A code construction method that allows adapting the code to the channel is introduced, which is based on time-varying convolutional codes. We can show by simulations that DT terminated convolutional codes lead to a lower MSE than standard block codes for all channel conditions. Furthermore, we develop an MSE approximation which is based on an upper bound on the error probability per information bit. By means of this MSE approximation, we compare the convolutional codes to linear unequal error protection code construction methods from the literature for code dimensions which are relevant in analog to digital conversion systems. In numerous situations, the DT terminated convolutional codes have the lowest MSE among all codes.

Runlength Limited Codes based on Convolutional Codes

  • Kim, Jeong-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8A
    • /
    • pp.1437-1440
    • /
    • 2001
  • We present a modification method for runlength limited codes based on convolutional codes. This method is based on cosets of convolutional codes and can be applied to any convolutional code without degradation of error control performance of the codes. The upper bound of maximum zero and/or one runlength are provided. Some convolutional codes which have the shortest maximum runlength for given coding parameters are tabulated.

  • PDF

Nonbinary Convolutional Codes and Modified M-FSK Detectors for Power-Line Communications Channel

  • Ouahada, Khmaies
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.270-279
    • /
    • 2014
  • The Viterbi decoding algorithm, which provides maximum - likelihood decoding, is currently considered the most widely used technique for the decoding of codes having a state description, including the class of linear error-correcting convolutional codes. Two classes of nonbinary convolutional codes are presented. Distance preserving mapping convolutional codes and M-ary convolutional codes are designed, respectively, from the distance-preserving mappings technique and the implementation of the conventional convolutional codes in Galois fields of order higher than two. We also investigated the performance of these codes when combined with a multiple frequency-shift keying (M-FSK) modulation scheme to correct narrowband interference (NBI) in power-line communications channel. Themodification of certain detectors of the M-FSK demodulator to refine the selection and the detection at the decoder is also presented. M-FSK detectors used in our simulations are discussed, and their chosen values are justified. Interesting and promising obtained results have shown a very strong link between the designed codes and the selected detector for M-FSK modulation. An important improvement in gain for certain values of the modified detectors was also observed. The paper also shows that the newly designed codes outperform the conventional convolutional codes in a NBI environment.

Optimum Convolutional Error Correction Codes for FQPSK-B Signals

  • Park, Hyung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.611-617
    • /
    • 2004
  • The optimum convolutional error correction codes for recently standardized Feher-patented quadrature phase-shift keying (FQPSK-B) modulation are proposed. We utilize the continuous phase modulation characteristics of FQPSK-B signals for calculating the minimum Euclidean distance of convolutional coded FQPSK-B signal. It is shown that the Euclidean distance between two FQPSK-B signals is proportional to the Hamming distance between two binary data sequence. Utilizing this characteristic, we show that the convolutional codes with optimum free Hamming distance is the optimum convolutional codes for FQPSK-B signals.

An Analysis of Bit Error Probability of Reed-Solomon/Convolutional Concatenated Codes (Reed-Solomon/길쌈 연쇄부호의 비트오율해석)

  • 이상곤;문상재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.19-26
    • /
    • 1993
  • The bit error probability of Reed-Solomon/convolutional concatenated codes can be more exactly calculated by using a more approximate bound of the symbol error probability of the convolutional codes. This paper obtains the unequal symbol error bound of the convolutional codes, and applies to the calculation of the bit error probability of the concatenated codes. Our results are tighter than the earlier studied other bounds.

  • PDF

DC-free error correcting codes based on convolutional codes (길쌈부호를 이용한 무직류 오류정정부호)

  • 이수인;김정구;주언경
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.24-30
    • /
    • 1995
  • A new class of DC-error correcting codes based on convolutional codes is proposed with its performance analysis. The proposed codes can be encoded and decoded using the conventional convolutional encoders and decoders with slight modifications. And the codes have null point at DC and capable of correcting errors. The DC-free error correcting codes are especially well suited for applications in high-speed channels.

  • PDF

Design of Recursive Systematic Convolutional Codes for Turbo Codes Based on the Distance Spectrum Properties (거리 분포 특성에 근거한 터보 부호의 순환 조직형 컨벌루션 부호 설계)

  • Kim, Dae-Son;Song, Hong-Yeop;Lee, Dong-Hahk;Yu, Jae-Hwang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2C
    • /
    • pp.155-160
    • /
    • 2008
  • In this letter, we propose a new design of recursive systematic convolutional (RSC) codes based on the distance spectrum properties which can maximize the performance. Good constituent RSC codes of code rate 1/2 are searched by computer and presented in a table. Their performances are shown by computer simulation. New designed codes shows faster convergences according to iterative decoding and good performances.

Finite Soft Decision Data Combining for Decoding of Product Codes With Convolutional Codes as Horizontal Codes (길쌈부호를 수평부호로 가지는 곱부호의 복호를 위한 유한 연판정 데이터 결합)

  • Yang, Pil-Woong;Park, Ho-Sung;Hong, Seok-Beom;Jun, Bo-Hwan;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.512-521
    • /
    • 2012
  • In this paper, we propose feasible combining rules for a decoding scheme of product codes to apply finite soft decision. Since the decoding scheme of product codes are based on complex tanh calculation with infinite soft decision, it requires high decoding complexity and is hard to practically implement. Thus, simple methods to construct look-up tables for finite soft decision are derived by analyzing the operations of the scheme. Moreover, we focus on using convolutional codes, which is popular for easy application of finite soft decision, as the horizontal codes of product codes so that the proposed decoding scheme can be properly implemented. Numerical results show that the performance of the product codes with convolutional codes using 4-bit soft decision approaches to that of same codes using infinite soft decision.