Browse > Article
http://dx.doi.org/10.3745/JIPS.2014.10.1.069

The Construction and Viterbi Decoding of New (2k, k, l) Convolutional Codes  

Peng, Wanquan (Dept. College of Electrical Engineering, Chongqing Vocational Institute of Engineering)
Zhang, Chengchang (Dept. College of Communication Engineering, Chongqing University)
Publication Information
Journal of Information Processing Systems / v.10, no.1, 2014 , pp. 69-80 More about this Journal
Abstract
The free distance of (n, k, l) convolutional codes has some connection with the memory length, which depends on not only l but also on k. To efficiently obtain a large memory length, we have constructed a new class of (2k, k, l) convolutional codes by (2k, k) block codes and (2, 1, l) convolutional codes, and its encoder and generation function are also given in this paper. With the help of some matrix modules, we designed a single structure Viterbi decoder with a parallel capability, obtained a unified and efficient decoding model for (2k, k, l) convolutional codes, and then give a description of the decoding process in detail. By observing the survivor path memory in a matrix viewer, and testing the role of the max module, we implemented a simulation with (2k, k, l) convolutional codes. The results show that many of them are better than conventional (2, 1, l) convolutional codes.
Keywords
Convolutional Codes; Block Codes; Double Loop Cyclic Codes; Matrix Decoding; Viterbi Algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shu Lin, Daniel J, Costello. Error Control Coding: Fundamentals and Applications [M]. 2nd ed. Pearson Education, 2004, pp.582-598.
2 Robinson J, Bernstein A. A class of binary recurrent codes with limited error propagation[J]. IEEE Transactions on Informational Theory, vol.13, 1967, pp.106-113.   DOI   ScienceOn
3 Massey J, Costello D. Nonsystematic Convolutional Codes for Sequential Decoding in Space Applications[J]. IEEE Transactions on Communication Technology, vol.19, 1971, pp.806-813.   DOI   ScienceOn
4 Bahl L, et al. An efficient algorithm for computing free distance[J]. IEEE Transactions on Informational Theory, vol.18, 1972, pp.437 - 439.   DOI
5 Berrou C, Glavieux A. Near optimum error correcting coding and decoding: turbo-codes[J]. IEEE Transactions on Communication Theory, vol.44, 1996, pp.1261-1271.   DOI   ScienceOn
6 Pusane A E, et al. Deriving Good LDPC Convolutional Codes from LDPC Block Codes[J]. IEEE Transactions on Informational Theory, vol.57, 2011, pp. 835-857.   DOI   ScienceOn
7 Iyengar A R, Papaleo M, et al. Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels[J]. IEEE Transactions on Informational Theory, vol.58, 2012, pp.2303-2320.   DOI   ScienceOn
8 Houshmand M, Hosseini-Khayat S, Wilde M M. Minimal-Memory, Noncatastrophic, Polynomial- Depth Quantum Convolutional Encoders[J]. IEEE Transactions on Informational Theory, vol.59, 2013, pp.1198-1210.   DOI   ScienceOn
9 Jie Luo. On Low-Complexity Maximum-Likelihood Decoding of Convolutional Codes[J]. IEEE Transactions on Informational Theory, vol.54, 2008, pp.5756-5760.   DOI   ScienceOn
10 Wang Xinmei. Error Correcting Codes-Princip1e and Method[M]. Xi'an: Xidian University Press, 2001, pp.159-161,455. (in Chinese)
11 Jie Jin, Chi-ying Tsui. Low-Power Limited-Search Parallel State Viterbi Decoder Implementation Based on Scarce State Transition[J]. IEEE Transactions on VLSI Systems, vol.15, 2007, pp.1172- 1176.   DOI   ScienceOn
12 Huebner A, Kliewer J, Costello D J. Double Serially Concatenated Convolutional Codes With Jointly Designed S-Type Permutors [J]. IEEE Transactions on Informational Theory, vol.55, 2009, pp.5811- 5821.   DOI   ScienceOn