• Title/Summary/Keyword: Conveyor belt

Search Result 105, Processing Time 0.019 seconds

Switched Reluctance Motors for Electric Drive of Overland Belt Conveyor

  • Ptakh, Gennady K.;Evsin, Nicholas F.;Zvezdunov, D. Alex;Rozhkov, Dmitry V.;Yakovenko, Alexander E.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.409-414
    • /
    • 2014
  • The parameters and operating characteristics of the switched reluctance motor (SRM) for the electric drive of the overland belt conveyor CLM-4500 have been presented. The motor power capacity has been equal to 1250 kW, the motor speed - 1000 min-1. SRM power supply has been provided by a three-phase voltage inverter and a 12-pulse rectifier circuit. The group electric drive has been installed on sections number 2 and 3, 3770 m and 3375 m length, respectively, on the areas of "Berezovsky Strip" JSC, a member of the Siberian Coal Energy Company.

A Study of Heavy Snow event caused Runway closed (활주로 폐쇄를 야기한 대설 사례 연구)

  • Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.106-111
    • /
    • 2013
  • The heavy snow event occurred on JAN 4, 2010 brought huge disaster such as Gimpo International Airport runway closed, heavy delays of other airport, and property damage of 16 billion won. Though this heavy snow event is involved in the general synoptic scale heavy snow forecast, it recorded too much snow amount and longer duration than expected. To explain this unusual event, we used the conveyor belt theory. By combining the synoptic scale heavy snow forecast and the conveyor belt theory, the characteristics of heavy snow event was well explained.

Dynamic Analyis of Long Distance Belt Conveyor During Starting and Stopping (장거리 벨트 컨베이어의 기동 및 정지시의 동적거동 해석)

  • Kim, Won-Jin;Park, Tae-Geon;Lee, Shin-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.585-593
    • /
    • 1996
  • According to the considerable increase of the length of belt conveyors, the dynamic analysis of systme becomes necessary to consider the variation of tensions and transient motion of components during starting and stopping of conveyor. The mathematical model of system is derived using the lumped parameter method. The input driving force is represented with two functions of time and pulley speed to count the characteristics of motor and fluid coupling. An example system was studied with 14 km in the distance of carrying. At head, it has two drivers and one gravity take-up and at tail ond driver and one power winch take-up. In the example, the transient tensions and responses, calculated using two cases of driving force, are mutually compared in starting mode. Also, the position of maximum tension and the braking force of take-up are obtained in stopping mode.

Remote Calibration Control and Monitoring System for Conveyor Scale using LabVIEW (LabVIEW를 이용한 Conveyor Scale의 원격 교정제어 및 모니터링 시스템)

  • Bang, Nam-Soo;Jang, Woo-Jin;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.72-80
    • /
    • 2012
  • In general, electronic conveyor scales are installed in a relatively distributed manner on the crushed rock and sand production site. It is one of the time-consuming and difficult engineering works to monitor and control the plant operation status such as the management of measuring data, malfunction of belt conveyor, and fault of electronic conveyor scale. Therefore, to alleviate the inefficient problems and to monitor the operating plant in the online and remote control room, a remote calibration and real-time monitoring system, which is practically applied to the electronic conveyor scale system and verified by onsite experiment, is developed based on the LabVIEW.

Motion Planning of a Robot Manipulator for Conveyor Tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동적계획)

  • 박태형;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.995-1006
    • /
    • 1989
  • If robots have the ability to track the parts on a moving conveyor belt, the efficiency of the manipulation tasks will be increased. This paper presents a motion planning algorithm for conveyor tracking. Tracking trajectory of a robot manipulator is determined by belt speed, initial part position, and initial robot position. Torque limit, maximum velocity, maximum acceleration and maximum jerk are also taken into account. To obtain the tracking solution, the problem is converted to the linear quadratic tracking problem. We describe the manipulator dynamics as second order state equation using parametric functions. Constraints on torques and smoothness are converted to those on input and state variables. The solution of the state equation which minimizes the performance index is obtained by dynamic programming method. Numerical examples are then presented to demonstrate the utility of the motion planning method developed.

A hierachical control structure of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

A Study on Automatic Inspection Algorithm for Moving Object using by Vision System (비전시스템을 이용한 이동물체 자동검사에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.99-105
    • /
    • 2009
  • Recently the research is much interested in about the inspection system using by computer vision system. In this paper, we deal with shape inspection technique for moving to be long and narrow object on conveyor belt. first, we are acquired for moving object on conveyor belt. then the object segmentation is using by color information for background and object. the object position be calculated by horizontal and a vertical histogram. second, we are checked for two hole in front part, widths and top/bottom side information in middle part, and finally checking for two holes in rear part. The performance of our proposed model is evaluated by experiments, within error of 1㎜, and can be checking to 17 object /min.