• Title/Summary/Keyword: Convex Decomposition

Search Result 45, Processing Time 0.025 seconds

An Optimal Decomposition Algorithm for Convex Structuring Elements (볼록 구조자룰 위한 최적 분리 알고리듬)

  • 온승엽
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1167-1174
    • /
    • 1999
  • In this paper, we present a new technique for the local decomposition of convex structuring elements for morphological image processing. Local decomposition of a structuring element consists of local structuring elements, in which each structuring element consists of a subset of origin pixel and its eight neighbors. Generally, local decomposition of a structuring element reduces the amount of computation required for morphological operations with the structuring element. A unique feature of our approach is the use of linear integer programming technique to determine optimal local decomposition that guarantees the minimal amount of computation. We defined a digital convex polygon, which, in turn, is defined as a convex structuring element, and formulated the necessary and sufficient conditions to decompose a digital convex polygon into a set of basis digital convex polygons. We used a set of linear equations to represent the relationships between the edges and the positions of the original convex polygon, and those of the basis convex polygons. Further. a cost function was used represent the total processing time required for computation of dilation/erosion with the structuring elements in a decomposition. Then integer linear programming was used to seek an optimal local decomposition, that satisfies the linear equations and simultaneously minimize the cost function.

  • PDF

Optimal Decomposition of Convex Structuring Elements on a Hexagonal Grid

  • Ohn, Syng-Yup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.37-43
    • /
    • 1999
  • In this paper, we present a new technique for the optimal local decomposition of convex structuring elements on a hexagonal grid, which are used as templates for morphological image processing. Each basis structuring element in a local decomposition is a local convex structuring element, which can be contained in hexagonal window centered at the origin. Generally, local decomposition of a structuring element results in great savings in the processing time for computing morphological operations. First, we define a convex structuring element on a hexagonal grid and formulate the necessary and sufficient conditions to decompose a convex structuring element into the set of basis convex structuring elements. Further, a cost function was defined to represent the amount of computation or execution time required for performing dilations on different computing environments and by different implementation methods. Then the decomposition condition and the cost function are applied to find the optimal local decomposition of convex structuring elements, which guarantees the minimal amount of computation for morphological operation. Simulation shows that optimal local decomposition results in great reduction in the amount of computation for morphological operations. Our technique is general and flexible since different cost functions could be used to achieve optimal local decomposition for different computing environments and implementation methods.

  • PDF

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

A Decomposition Algorithm for Convex Structuring Elements in Morphological Operation (모폴로지 연산에 사용되는 볼록 구조요소의 분해를 위한 알고리듬)

  • 온승엽
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2004
  • The decomposition of a structuring element for a morphological operation reduces the amount of the computation required for executing the operation. In this paper, we present a new technique for the decomposition of convex structuring elements for morphological operations. We formulated the linear constraints for the decomposition of a convex polygon in discrete space, then the constraints are applied to the decomposition of a convex structuring element. Also, a cost function is introduced to represent the optimal criteria for decomposition. We use linear integer programming technique to find the combination of basis structuring elements which minimizes the amount of the computation required for executing the morphological operation. Formulating different cost functions for different implementation methods and computer architectures, we can determine the optimal decompositions which guarantee the minimal amounts of computation on different computing environment.

  • PDF

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Decomposition based on Object of Convex Shapes Using Poisson Equation (포아송 방정식을 이용한 컨벡스 모양의 형태 기반 분할)

  • Kim, Seon-Jong;Kim, Joo-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.137-144
    • /
    • 2014
  • This paper proposes a novel procedure that uses a combination of overlapped basic convex shapes to decompose 2D silhouette image. A basic convex shape is used here as a structuring element to give a meaningful interpretation to 2D images. Poisson equation is utilized to obtain the basic shapes for either the whole image or a partial region or segment of an image. The reconstruction procedure is used to combine the basic convex shapes to generate the original shape. The decomposition process involves a merging stage, filtering stage and finalized by compromising stage. The merging procedure is based on solving Poisson's equation for two regions satisfying the same symmetrical conditions which leads to finding equivalencies between basic shapes that need to be merged. We implemented and tested our novel algorithm using 2D silhouette images. The test results showed that the proposed algorithm lead to an efficient shape decomposition procedure that transforms any shape into a simpler basic convex shapes.

Generalized Cross Decomposition Algorithm for Large Scale Optimization Problems with Applications (대규모 최적화 문제의 일반화된 교차 분할 알고리듬과 응용)

  • Choi, Gyung-Hyun;Kwak, Ho-Mahn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 2000
  • In this paper, we propose a new convex combination weight rule for the cross decomposition method which is known to be one of the most reliable and promising strategies for the large scale optimization problems. It is called generalized cross decomposition, a modification of linear mean value cross decomposition for specially structured linear programming problems. This scheme puts more weights on the recent subproblem solutions other than the average. With this strategy, we are having more room for selecting convex combination weights depending on the problem structure and the convergence behavior, and then, we may choose a rule for either faster convergence for getting quick bounds or more accurate solution. Also, we can improve the slow end-tail behavior by using some combined rules. Also, we provide some computational test results that show the superiority of this strategy to the mean value cross decomposition in computational time and the quality of bounds.

  • PDF

Wide Beam Design of a Fully Digital Active Array Radar Using Convex Optimization with Only Phase Control (위상 조정 Convex 최적화 알고리즘을 이용한 완전 디지털 능동배열레이다의 광역빔 설계)

  • Yang, Woo-Yong;Lee, Hyun-Seok;Yang, Sung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.479-486
    • /
    • 2019
  • The fully digital active array radar uses a wide beam for effective mission performance within a limited time. This paper presents a convex optimization algorithm that adjusts only the phase of an array element. First, the algorithm applies a semidefinite relaxation technique to relax the constraint and convert it to a convex set. Then, the constraint is set so that the amplitude is fixed to some extent and the phase is variable. Finally, the optimization is performed to minimize the sum of the eigenvalues obtained through eigenvalue decomposition. Compared to the application results of the existing genetic algorithm, the proposed algorithm is more effective in wide beam design for a fully digital active array radar.

A Decomposition Method for Two stage Stochstic Programming with Block Diagonal Structure (블록 대각 구조를 지닌 2단계 확률계획법의 분해원리)

  • 김태호;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 1985
  • This paper develops a decomposition method for stochastic programming with a block diagonal structure. Here we assume that the right-hand side random vector of each subproblem is differente each other. We first, transform this problem into a master problem, and subproblems in a similar way to Dantizig-Wolfe's Decomposition Princeple, and then solve this master problem by solving subproblems. When we solve a subproblem, we first transform this subproblem to a Deterministic Equivalent Programming (DEF). The form of DEF depends on the type of the random vector of the subproblem. We found the subproblem with finite discrete random vector can be transformed into alinear programming, that with continuous random vector into a convex quadratic programming, and that with random vector of unknown distribution and known mean and variance into a convex nonlinear programming, but the master problem is always a linear programming.

  • PDF

AN APPROXIMATE ALTERNATING LINEARIZATION DECOMPOSITION METHOD

  • Li, Dan;Pang, Li-Ping;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1249-1262
    • /
    • 2010
  • An approximate alternating linearization decomposition method, for minimizing the sum of two convex functions with some separable structures, is presented in this paper. It can be viewed as an extension of the method with exact solutions proposed by Kiwiel, Rosa and Ruszczynski(1999). In this paper we use inexact optimal solutions instead of the exact ones that are not easily computed to construct the linear models and get the inexact solutions of both subproblems, and also we prove that the inexact optimal solution tends to proximal point, i.e., the inexact optimal solution tends to optimal solution.