• 제목/요약/키워드: Converter efficiency

검색결과 1,913건 처리시간 0.029초

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

로스레스 스너버 커패시터를 이용한 새로운 스텝 업-다운 컨버터에 관한 연구 (A Study on Novel Step Up-Down Converter using Loss-Less Snubber Capacitor)

  • 곽동걸;이봉섭;김춘삼;심재선;정원석;손재현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.15-16
    • /
    • 2012
  • This paper is study on a novel high efficiency step up-down converter using loss-less snubber capacitor. The proposed converter is accomplished that the turn-on operation of switches is on zero current switching (ZCS) by DCM. The converter is also applicable to a new quasi-resonant circuit to achieve high efficiency converter. The control switches using in the converter are operated with soft switching, that is, ZVS and ZCS by quasi-resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the converter is high.

  • PDF

A Novel Hybrid Converter with Wide Range of Soft-Switching and No Circulating Current for On-Board Chargers of Electric Vehicles

  • Tran, Van-Long;Tran, Dai-Duong;Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.143-151
    • /
    • 2018
  • In this paper, a novel hybrid configuration combining a phase-shift full-bridge (PSFB) and a half-bridge resonant LLC converter is proposed for the On-Board Charger of Electric Vehicles (EVs). In the proposed converter, the PSFB converter shares the lagging-leg switches with half-bridge resonant converter to achieve the wide ZVS range for the switches and to improve the efficiency. The output voltage is modulated by the effective-duty-cycle of the PSFB converter. The proposed converter employs an active reset circuit composed of an active switch and a diode for the transformer which makes it possible to achieve zero circulating current and the soft switching characteristic of the primary switches and rectifier diodes regardless of the load, thereby making the converter highly efficient and eliminating the reverse recovery problem of the diodes. In addition an optimal power sharing strategy is proposed to meet the specification of the charger and to optimize the efficiency of the converter. The operation principle the proposed converter and design considerations for high efficiency are presented. A 6.6 kW prototype converter is fabricated and tested to evaluate its performance at different conditions. The peak efficiency achieved with the proposed converter is 97.7%.

ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계 (8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System)

  • 김진우;백승훈;조영훈;구태근
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.

에너지 저장 시스템을 위한 LLC/동기 벅컨버터 기반 고효율 배터리 충방전기 설계 (LLC Resonant and Synchronous Buck Converter Based High Efficiency Battery Charger for Energy Storage Systems)

  • 이태영;이일운;조영훈;김한구;조준석;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.15-16
    • /
    • 2016
  • This paper proposes an isolated DCDC converter that consists of unregulated LLC resonant converter and non-isolated synchronous buck converter for battery charger of energy storage systems application. The unregulated converter operates as transformer with fixed duty ratio and switching frequency. The synchronous buck converter is installed in the output of the LLC resonant converter. And the converter charges and discharges the battery by controlling a current of battery. The proposed converter can get the high efficiency by separating function. This paper explains design of an unregulated converter and synchronous converter.

  • PDF

영전압 스위칭 컨버터의 고속 스위칭에 관한 연구 (A Study On The High Frequency Switching Of Zero Voltage Switching Converter)

  • 김인수;김의찬;이병하;성세진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.537-539
    • /
    • 1996
  • In this paper, a design method of the phase shift ZVS-PWM converter is proposed to minimize the volume and increase the efficiency. The trade-offs of switching frequency, efficiency vs volume and ZVS range vs efficiency is also presented. The simulation of the designed converter is performed using the P-SPICE in which a phase-shift controller is proposed. For minimization of the converter volume, switching frequency is selected 100kHz, a simple drive circuit and single auxiliary supply are applied. In consideration of efficiency and load condition, ZVS range is decided from 50% to full load. A 28V, 1Kwatt prototype converter, of which the switch is MOSFET is made, verified the performance.

  • PDF

하이브리드 자동차 고전압 배터리 충, 방전을 위한 49kW급 고효율 양방향 DC/DC 컨버터 설계 (Design of a 49kW high efficiency bidirectional DC-DC converter for charge and discharge of high voltage battery in HEV)

  • 양진영;윤창우;박성식;최세완;박래관;장서건
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.21-23
    • /
    • 2007
  • In this paper a high efficiency bi-directional DC-DC converter for hybrid vehicles is proposed. The proposed converter a three-phase half-bridge interleaved ZVS converter, is designed to have high efficiency in the main operation range. The component ratings are calculated, the actual devices are selected, and the efficiency analysis has been performed to determine optimal ZVS range. The input and output current ripples are significantly reduced due to the interleaved operation. The dual loop control for the interleaved three-phase converter is also presented. To confirm the proposed convert ter, The simulation and experimental results are presented.

  • PDF

Optimal Design Methodology of Zero-Voltage-Switching Full-Bridge Pulse Width Modulated Converter for Server Power Supplies Based on Self-driven Synchronous Rectifier Performance

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.121-132
    • /
    • 2016
  • In this paper, high-efficiency design methodology of a zero-voltage-switching full-bridge (ZVS-FB) pulse width modulation (PWM) converter for server-computer power supply is discussed based on self-driven synchronous rectifier (SR) performance. The design approach focuses on rectifier conduction loss on the secondary side because of high output current application. Various-number parallel-connected SRs are evaluated to reduce high conduction loss. For this approach, the reliability of gate control signals produced from a self-driver is analyzed in detail to determine whether the converter achieves high efficiency. A laboratory prototype that operates at 80 kHz and rated 1 kW/12 V is built for various-number parallel combination of SRs to verify the proposed theoretical analysis and evaluations. Measurement results show that the best efficiency of the converter is 95.16%.

고효율 플라이백 컨버터를 위한 새로운 에너지 회복회로 (Novel Energy Recovery Circuit for High Efficiency Flyback Converter)

  • 정용채
    • 전력전자학회논문지
    • /
    • 제11권6호
    • /
    • pp.529-534
    • /
    • 2006
  • 요즘 많은 연구자들이 전력변환회로의 효율을 올리는데 이전보다 훨씬 많은 관심을 기울이고 있다. 플라이백 컨버터에서 RCD 스너버의 저항은 누설인덕터에 저장된 에너지를 소모한다. 이는 전체 시스템 효율을 감소시키는 역할을 한다. 그래서 이 논문에서는 효율을 향상시키기 위해서 플라이백 컨버터의 새로운 에너지 회복회로를 제안한다. 제안된 회로의 동작원리를 자세히 설명한다. 그리고 이를 모의실험 및 실험을 통해서 확인한다.

A 3 kW Bidirectional DC-DC Converter for Electric Vehicles

  • Ansari, Arsalan;Cheng, Puyang;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.860-868
    • /
    • 2016
  • A bidirectional DC-DC converter (BDC) is an indispensable electrical unit for the electric vehicles (EVs). High efficiency, high power density, isolation, light weight and reliability are all essential requirements for BDC. In this paper, a 3 kW BDC for the battery charger of EVs is proposed. The proposed converter consists of a half-bridge structure on the primary side and an isolation transformer and a synchronous rectifier structure on the secondary side. With this topology, minimum number of switching devices are required for bidirectional power flow between the two dc buses of EVs. The easy implementation of the synchronous rectification gives advantages in terms of efficiency, cost and flexibility. The proposed BDC achieves high efficiency when operating in both modes (step-up and step-down). A 3 kW prototype is implemented to verify theoretical analysis and the performance of the proposed converter.