• Title/Summary/Keyword: Conversion material

검색결과 917건 처리시간 0.026초

정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발 (Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application)

  • 이동현;김병옥;박무룡;윤의수
    • Tribology and Lubricants
    • /
    • 제36권3호
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.

정압 베어링을 적용한 수소 액화 공정용 터보 팽창기 개발 (Development of Turbo Expanders with Hydrostatic Bearings for Hydrogen Liquefaction Plants)

  • 이동현;김병옥;박무룡;임형수
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.91-98
    • /
    • 2021
  • This paper presents a hydrostatic bearing design and rotordynamic analysis of a turbo expander for a hydrogen liquefaction plant. Th~e turbo expander includes the turbine and compressor wheel assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 75,000 rpm and the rated power is 6 kW. For the bearing operation, we use pressurized air at 8.5 bar as the lubricant that is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various gauge pressure ratios and select the orifice diameter providing the maximum bearing stiffness. Additionally, we conduct a rotordynamic analysis based on the calculated bearing stiffness and damping considering design parameters of the turbo expander. The predicted Cambell diagram indicates that there are two critical speeds under the rated speed and there exists a sufficient separation margin for the rated speed. In addition, the predicted rotor vibration is under 1 ㎛ at the rated speed. We conduct the operating test of the turbo expander in the test rig. For the operation, we supply pressurized air to the turbine and monitor the shaft vibration during the test. The test results show that there are two critical speeds under the rated speed, and the shaft vibration is controlled under 2.5 ㎛.

Electrochemical Properties of PPy/CNT Electrodes Prepared by Chemical Process for Ultracapacitor

  • Shin, Jeong-Gyun;Park, Soo-Gil
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.141-144
    • /
    • 2007
  • Polypyrrole(PPy) was composite with MWNT to attain cycle stable by chemical method. We have been considered PPy is the ideal material for high energy density electrochemical capacitor due to pseudo capacitor reaction. In this study we found that increase in cycle life due to composite MWNT. Also PPy/MWNT composite material have resulted larger capacitance and exhibits better electrochemical behavior. The structural feature was investigated by using SEM and TEM. The PPy/CNT composite is not only a promising ultracapacitor material for energy storages but also has a good possibility because of its great capacitive properties, simple preparation and low cost.

Novel Organic Sensitizers with a Quinoline Unit for Efficient Dye-sensitized Solar Cells

  • Choi, Hye-Ju;Choi, Hyun-Bong;Paek, Sang-Hyun;Song, Ki-Hyung;Kang, Moon-Sung;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.125-132
    • /
    • 2010
  • Three organic sensitizers, JK-128, JK-129, and JK-130 containing quinoline unit are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-130 sensitized solar cell gave a short circuit photocurrent density of 11.52 mA $cm^{-2}$, an open circuit voltage of 0.70 V, and a fill factor of 0.75, corresponding to an overall conversion efficiency of 6.07%. We found that the $\eta$ of JK-130 was higher than those of other two cells due to the higher photocurrent. The higher $J_{sc}$ value is attributed to the broad and intense absorption spectrum of JK-130.

고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학 (Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries)

  • 하시온;김경호
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

PRACTICAL MODELLING OF STONE-COLUMN REINFORCED GROUND

  • Tan By S.A.;Tjahyono S.
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.291-311
    • /
    • 2006
  • The acceleration of consolidation by stone columns was mostly analysed within the framework of a basic unit cell model (i.e. a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modelling of multi-column field applications. This paper proposes two practical simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multi-column reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modelling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elasto-plastic material modelling, the second method is preferable as the first one gives erroneously lower long-term settlements, where plastic yielding of stone column are ignored.

  • PDF

광전극 폭 변화에 따른 W-상호연결 염료감응 태양전지 모듈의 전기적 특성 연구 (Study on the Electrical Properties of W-interconnected DSSC Modules According to Variation of the Working Electrode Width)

  • 오병윤;김상기;김두근
    • 한국전기전자재료학회논문지
    • /
    • 제26권4호
    • /
    • pp.298-303
    • /
    • 2013
  • In this study, the W-interconnected dye-sensitized solar cell (DSSC) modules composed of a number of rectangular cells connected in series were investigated, where neighboring cells are processed in reverse. The DSSC modules, a module of dimension about 200 mm ${\times}$ 200 mm, were fabricated with different working electrode width ranging from 5 mm to 21 mm. The short-circuit current of the module increased as the working electrode width increased. Whereas, the decrease in the working electrode width resulted in the increase of the conversion energy efficiency, fill factor, and open-circuit voltage, which is explained by the fact that the possibility that electrons are recombined along their path on the transparent conductive oxide substrate decreases. The module with the conversion energy efficiency of 3.59% was obtained with the working electrode width of 5 mm.

친환경 Pb-Free 페로브스카이트 태양전지를 위한 비스무스 기반의 무기 박막 최적화 연구 (Optimization of Bismuth-Based Inorganic Thin Films for Eco-Friend, Pb-Free Perovskite Solar Cells)

  • 서예진;강동원
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.117-121
    • /
    • 2018
  • Perovskite solar cells have received increasing attention in recent years because of their outstanding power conversion efficiency (exceeding 22%). However, they typically contain toxic Pb, which is a limiting factor for industrialization. We focused on preparing Pb-free perovskite films of Ag-Bi-I trivalent compounds. Perovskite thin films with improved optical properties were obtained by applying an anti-solvent (toluene) washing technique during the spin coating of perovskites. In addition, the surface condition of the perovskite film was optimized using a multi-step thermal annealing treatment. Using the optimized process parameters, $AgBi_2I_7$ perovskite films with good absorption and improved planar surface topography (root mean square roughness decreased from 80 to 26 nm) were obtained. This study is expected to open up new possibilities for the development of high performance $AgBi_2I_7$ perovskite solar cells for applications in Pb-free energy conversion devices.

$TiO_2$ 광전극 paste의 구성 물질 함유량에 따른 염료감응 태양전지의 효율변화 (Effects of $TiO_2$ electrode paste components on conversion efficiency of dye-sensitized solar cells)

  • 류경진;송상우;이경주;김지홍;문병무
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.226-226
    • /
    • 2010
  • The effects of paste components on the properties of porous $TiO_2$ film electrodes prepared through screen-printing technique were investigated in order to efficiently control and optimize the main fabrication step of the dye-sensitized solar cells (DSC). The screen-printed porous $TiO_2$ films were characterized by ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM), and applied as a part of the DSC for the energy conversion. The fabricated DSC were evaluated by a solar simulator. The experimental results indicate that the microstructural characteristics of the printed films and the performances of the DSC are dependent on the paste compositions. As a result that the efficiency of DSC prepared by manufactured paste was 0.5%~1% higher than existing paste.

  • PDF

염료감응형 태양전지의 고효율화를 위한 $Alq_3$가 코팅된 FTO기판 제작 (Optimization of $Alq_3$-coated FTO substrate for high efficient of DSSC)

  • 박아름;박경희;구할본;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.241-241
    • /
    • 2010
  • Recently high and persistent spontaneous buildup of a surface potential (SP) upon vacuum deposition of tris (8-hydroxyquinolinato) aluminum (III) ($Alq_3$), which is widely used for organic light emitting devices. The removal of the giant surface potential by visible light irradiation has also been reported. In this study, we coated $Alq_3$ on the FTO substrate and raise the capacity for absorbing sun light. The $Alq_3$ which is green light emitting diode emits light at wavelengths between 500 and 550nm. If we apply one's FTO/$Alq_3$ substrate in one's DSSC, we could get higher energy conversion efficiency because the N719 dye that we used for fabricating the DSSC emits light just at near 540nm. The energy conversion efficiency of approximately 4.8 % at the condition of irradiation of AM 1.5 (100 mW/$cm^2$) simulated sunlight, and the $J_{sc}$ is 12.0 mA/$cm^2$, $V_{oc}$ is 0.71 V, FF is 0.56, respectively.

  • PDF