• Title/Summary/Keyword: Conversion Efficiency

Search Result 2,742, Processing Time 0.032 seconds

Biomass Conversion Efficiencies of Fish Pond Fertilization and Feed Supplementation

  • Mahboob, Shahid;Sheri, A.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.192-195
    • /
    • 1998
  • Biomass conversion efficiencies (B.C.E) of six fish species viz, Catla catla, Labeo, rohita, Cirrhina mrigala, Hypophthalmicthys molitrix, Ctenopharyngodon idella and Cyprinus carpio cultured under artificial feed (T1), broiler manure (T2), buffalo manure (T3), N:P:K (25:25:0) (T4) and control pond (T5) have been determined for the period of one year. The overall biomass conversion efficiencies under the influence of T2, T3, and T4 were statistically similar. However, the best (0.40) efficiency was determined under feed supplement-ation (T1).

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

A Study on the Conversion Efficiency of Rectenna for Microwave Wireless Power Transmission System (Rectenna의 형태와 방향변화에 따른 변환효율 분석에 관한 연구)

  • 윤동기;박양하김관호이영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.189-192
    • /
    • 1998
  • In this paper, we analyzed Microwave-DC conversion efficiency for the rectennas and it's position change. Rectenna consist of a two major parts, receiveing antenna and rectifying circuits. We made two types of 2.45C rectennas which the dipole and the patch antenna. Rectifying circuit is a GaAs-schottky diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for two rectennas, patch type has 75.6% efficiency with 400$\Omega$ load resistor and dipole type has 69.75% efficiency with 360$\Omega$ load resistor. When the rectennas has optimal load resistor, Rectenna efficiency shows of $\pm10%$ at $70^{\circ}$~$110^{\circ}$ position.

  • PDF

Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis (NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향)

  • Oh, Taekyun;Kwon, Sejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

Analysis of RF-DC Conversion Efficiency of Composite Multi-Antenna Rectifiers for Wireless Power Transfer

  • Deng, Chao;Huang, Kaibin;Wu, Yik-Chung;Xia, Minghua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5116-5131
    • /
    • 2017
  • This paper studies the radio frequency to direct current (RF-DC) conversion efficiency of rectennas applicable to wireless power transfer systems, where multiple receive antennas are arranged in serial, parallel or cascaded form. To begin with, a 2.45 GHz dual-diode rectifier is designed and its equivalent linear model is applied to analyze its output voltage and current. Then, using Advanced Design System (ADS), it is shown that the rectifying efficiency is as large as 66.2% in case the input power is 15.4 dBm. On the other hand, to boost the DC output, three composite rectennas are designed by inter-connecting two dual-diode rectifiers in serial, parallel and cascade forms; and their output voltage and current are investigated using their respective equivalent linear models. Simulation and experimental results demonstrate that all composite rectennas have almost the same RF-DC conversion efficiency as the dual-diode rectifier, yet the output of voltage or current can be significantly increased; in particular, the cascade rectenna obtains the highest rectifying efficiency.

A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration (박막의 조성비율에 따른 유기태양전지의 효율성 연구)

  • Kim, Seung-Ju;Lee, Dong-Keun;Park, Jae-Hyung;Gong, Su-Cheol;Kim, Won-Ki;Ryu, Sang-Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF

Numerical Study on the Effect of Exhaust Flow Pattern under Real Running Condition on the Performance and Reliability of Closed-Coupled Catalyst (실 운전조건에서의 배기유동패턴이 근접장착 촉매변환기의 성능 및 신뢰성에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • The engine-out flow is highly transient and hot, and may place tremendous thermal and inertial loads on a closed-coupled catalyst. Therefore, time-dependent and detailed flow and thermal field simulation may be crucial. The aim of this study is to develop combined chemical reaction and multi-dimensional fluid dynamic mathematical model and to study the effect of unsteady pulsating thermal and flow characteristics on thermal reliability of closed-coupled catalyst. The effect of cell density on the conversion performance under real running condition is also investigated. Unlike previous studies, the present study focuses on coupling between the problems of pulsating flow pattern and catalyst thermal response and conversion efficiency. The results are expressed in terms of temporal evolution of flow, pollutant and temperature distribution as well as transient characteristics of conversion efficiency. Fundamental understanding of the flow and thermal phenomena of closed-coupled catalyst under real running condition is presented. It is shown that instants of significantly low values of flow uniformity and conversion efficiency exist during exhaust blowdown and the temporal varaition of flow uniformity is very similar in pattern to one of conversion efficiency. It is also found that the location of hot spot in monolith is directly affected by transient flow pattern in closed-coupled catalyst.

Emission Characteristics of Diesel Oxidation Catalysts for a Commercial Diesel Engine (상용 디젤엔진용 산화촉매의 배출가스 저감 특성)

  • Choi, B.C.;Lee, C.H.;Park, H.J.;Jung, M.K.;Kwon, G.M.;Shin, B.S.;Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.18-23
    • /
    • 2002
  • Recently, as people pay attention to the environmental pollution, the emission of diesel engine has become a serious problem. Diesel Oxidation Catalysts(DOC) were experimentally investigated for the purification of pollutants exhaust emission from the diesel engine. In this study, the conversion efficiency of exhaust gas was investigated with various washcoat materials of the DOC. It was formed that CO conversion efficiency depended on temperature, but THC conversion was dominated by temperature and space velocity. Conversion efficiency of THC and CO increased with the addition of ZSM-5 in the washcoat, whereas these conversion efficiency decreased by adding Nd and Ba additives. $V_2O_5$ additive had the thermal stability for high temperature. Thermal durability of the catalyst was improved as increase of $V_2O_5$ additive.

  • PDF

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

Characterization of SCR System for NOx Reduction of Diesel Engine (II) (디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II))

  • Lee, Joon-Seong;Kim, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.