• Title/Summary/Keyword: Convergence of oceanography and IT

Search Result 16, Processing Time 0.022 seconds

The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry

  • Hong, Hyun-Hee;Lee, Hyun-Gwan;Jo, Jihoon;Kim, Hye Mi;Kim, Su-Man;Park, Jae Yeon;Jeon, Chang Bum;Kang, Hyung-Sik;Park, Myung Gil;Park, Chungoo;Kim, Kwang Young
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.373-378
    • /
    • 2016
  • Cochlodinium polykrikoides is a red-tide forming dinoflagellate that causes significant worldwide impacts on aquaculture industries and the marine ecosystem. There have been extensive studies on managing and preventing C. polykrikoides blooms, but it has been difficult to identify an effective method to control the bloom development. There is also limited genome information on the molecular mechanisms involved in its various ecophysiology and metabolism processes. Thus, comprehensive genome information is required to better understand harmful algal blooms caused by C. polykrikoides. We estimated the C. polykrikoides genome size using flow cytometry, with detection of the fluorescence of DNA stained with propidium iodide (PI). The nuclear genome size of C. polykrikoides was 100.97 Gb, as calculated by comparing its mean fluorescence intensity (MFI) to the MFI of Mus musculus, which is 2.8 Gb. The exceptionally large genome size of C. polykrikoides might indicate its complex physiological and metabolic characteristics. Our optimized protocol for estimating the nuclear genome size of a dinoflagellate using flow cytometry with PI can be applied in studies of other marine organisms.

Study on Relationship Between Geographical Convergence and Bottom Friction at the Major Waterways in Han River Estuary using the Tidal Wave Propagation Characteristics (조석 전파 특성을 활용한 한강하구 주요 수로의 지형학적 수렴과 바닥 마찰 간의 관계에 대한 연구)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.383-392
    • /
    • 2011
  • The basic research of the estuarine circulation at Gyeong-Gi bay has not been well studied up to now, although coastal development pressures have been continuously increased. To understand the oceanographic phenomena at the Han River estuary, it's essential to understand the propagation characteristic of tidal wave which is the strongest external forcing in this region. In this study, we investigate the tidal wave propagation characteristics along the 3 major channels using observation data and numerical model. It is found that 3 channels are all hyper-synchronous and the most important physical factor controlling the tidal wave propagation is topographical convergence of estuary shape and friction. The result of analytic solution at ideal channel considering the topographical convergence and friction show that the contribution of physical role of convergence and friction varies at 3 different channel. And the ratio of convergence and friction at Yeomha channel is four times larger than Seokmo channel. Because of this effect, the location of maximum amplitude at Yeomha channel is showed up downward than Seokmo channel. The ratio of decreasing amplitude and increasing phase per unit distance between stations is bigger than Seokmo channel. Although 3 major channel show a hyper-synchronous pattern, Yeomha shows more frictionally dominant channel and Seokmo channel is more dominantly affected by convergence effect.

SIEVING NONLINEAR INTERNAL WAVES IN SATELLITE IMAGES

  • Liu, Cho-Teng;Chao, Yen-Hsiang;Hsu, Ming-Kuang;Chen, Hsien-Wen
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.820-823
    • /
    • 2006
  • Nonlinear internal waves (NLIW) were studied as a unusual phenomena in the ocean decades ago. As the quality, quantity and variety of satellite images improve over decades, it is founded that NLIW is a ubiquitous phenomenon. Over the continental shelf of northern South China Sea (SCS), both optical and microwave images show that there are trains of NLIW packets near Dongsha Atoll (20.7N, 116.8E). Each packet contains several NLIW fronts. These NLIW packets are nearly parallel to each other and they are refracted, reflected or diffracted by the change of ocean bottom topography. Based on Korteweg de Vries (KdV) theory and the assumption that the bright/dark lines in the satellite images are centers of convergence/divergence of NLIW fronts, one may (1) sort NLIW packets in the same satellite image into groups of the same source, but generated at different tidal cycles, (2) relate NLIW packets in consecutive satellite images of one day apart, (3) locating faint signals of NLIW fronts in a satellite image. The NLIWs travel more than 100 km/day near Dongsha Atoll, with higher speed in deeper water. The bias and standard deviation of predicted location of NLIW front from its true location is about 1% and 5.1%, respectively.

  • PDF

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.

A thought experiment on the Cochlodinium bloom in Korean waters (한국해역 Cochlodinium의 이상증식에 대한사고실험)

  • 이동섭
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.173-178
    • /
    • 2004
  • Chronic Cochlodinium blooms in the southern waters of Korea have brought about considerable economic losses for about a decade, This paper aims to reframe current perspectives on the outbreak mechanism and the remediation schemes through a thought experiment in a context of mass balance and mathematical ecology. Far different explanations emerge from a careful examination of the scientifically unnoticed clues and a through discussion on the phytoplankton conservation equation. Logic of the eutrophication-induced red tide subjects to criticism. It is strongly recommended that the current remediation scheme to exterminate the target species should be rerouted to an environmentally sound competition enhancement tactics. Finally a novel convergence-float-aggregation hypothesis is proposed as an outbreak mechanism.

Classification of Estuaries based on Morphological Convergence (형태적 수렴 특성을 이용한 하구 분류)

  • SHIN, Hyun-jung;RHEW, Hosahng;LEE, Guan-hong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.1-22
    • /
    • 2012
  • The classification scheme of estuaries can be divided into two categories: qualitative classification based on geomorphic characteristics and quantitative classification based upon the physical properties of water body. While simple and intuitive scheme of the former is difficult to quantify, the latter is not easy to apply due to the lack of data. A classification scheme based on morphological convergence is very promising because it only requires easily accessible data such as width and depth of channels, as well as it can characterize estuaries in terms of tidal propagation. Thus, this paper examines the classification scheme based on estuarine morphological convergence using depth and width data obtained from 19 major Korean estuaries. Morphological convergence for each estuary was estimated with the estuarine length, width and depth data to get the convergence parameters, which includes the degree of funneling ${\nu}$ and the dimensionless estuarine length $y_0$. The transfer function ${\xi}({\nu},ky)$ is then deduced analytically from 1D depth-integrated hydrodynamic momentum equation and continuity equation for estuarine shapes. Tidal response of each estuary is finally calculated using ${\nu}$, $y_0$ and ${\xi}({\nu},ky)$ for comparison and classification. The 19 Korean estuaries were classified into three groups: tidal amplitude-dominated estuaries with standing wave-like tidal response (group 1), current-dominated estuaries with progressive wave-like tidal response (group 2), and the intermediate group (group 3) between groups 1 and 2. The sensitivity analysis revealed that uncertainties in determining the estuarine length can have a critical effect upon the results of classification, which indicates that the reasonable determination of the estuarine length is of critical importance. Once the estuarine length is feasibly determined, depth-convergence can be neglected without any negative effect on the classification scheme, which has an important ramification on the wide applicability of the classification scheme.

Development of Contents on the Marine Meteorology Service by Meteorology and Climate Big Data (기상기후 빅데이터를 활용한 해양기상서비스 콘텐츠 개발)

  • Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.125-138
    • /
    • 2016
  • Currently, there is increasing demand for weather information, however, providing meteorology and climate information is limited. In order to improve them, supporting the meteorology and climate big data platform use and training the meteorology and climate big data specialist who meet the needs of government, public agencies and corporate, are required. Meteorology and climate big data requires high-value usable service in variety fields, and it should be provided personalized service of industry-specific type for the service extension and new content development. To provide personalized service, it is essential to build the collaboration ecosystem at the national level. Building the collaboration ecosystem environment, convergence of marine policy and climate policy, convergence of oceanography and meteorology and convergence of R&D basic research and applied research are required. Since then, demand analysis, production sharing information, unification are able to build the collaboration ecosystem.

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF

Analysis of Long-term Linear Trends of the Sea Surface Height Along the Korean Coast based on Quantile Regression (분위회귀를 이용한 한반도 연안 해면 고도의 장주기 선형 추세 분석)

  • LIM, BYEONG-JUN;CHANG, YOU-SOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2018
  • This study analyzed the long-term linear trends of the sea surface height around the Korea marginal seas for the period of 1993~2016 by using quantile regression. We found significant difference about 2~3 mm/year for the linear trend between OLS (ordinary least square) and median (50%) quantile regression especially in the Yellow Sea, which is affected by extreme events. Each area shows different trend for each quantile (lower (1%), median (50%) and upper (99%)). Most areas of the Yellow Sea show increasing trend in both low and upper quantile, but significant "upward divergence tendency". This implies that significant increasing trend of upper quantile is higher than that of lower quantile in this area. Meanwhile, South Sea of Korea generally shows "upward convergence tendency" representing that increasing trend of upper quantile is lower than that of lower quantile. This study also confirmed that these tendencies can be eliminated by removing major tidal components from the harmonic analysis. Therefore, it is assumed that the regional characteristics are related to the long term change of tide amplitude.

Weekly Variation of Phytoplankton Communities in the Inner Bay of Yeong-do, Busan (부산 영도 내만에서 식물플랑크톤 군집의 주간 변동 특성)

  • YANG, WONSEOK;CHOI, DONG HAN;WON, JONGSEOK;KIM, JIHOON;HYUN, MYUNG JIN;LEE, HAEUN;LEE, YEONJUNG;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.356-368
    • /
    • 2021
  • To understand the temporal variation of phytoplankton communities in a coastal area, the biomass and diversity were weekly investigated in the inner bay of Yeong-do, Busan. In the study area, chlorophyll a concentration ranged from 0.43~7.58 mg m-3 during the study, indicating the study area was in mesotrophic or eutrophic status. The fractions of chlorophyll a occupied by large phytoplankton (> 3 ㎛ diameter) exhibited an average of 80% of total chlorophyll a in this study. Among the large phytoplankton, while Bacillariophyta was the most dominant in spring and summer, Cryptophyceae prevailed in the fall and winter. On the contrary, in the picophytoplankton community less than 3 ㎛ in diameter, Mamiellophyceae was the most dominant in most seasons, Cryptophyceae was relatively high with an average of 17.7 ± 17.6% throughout the year, but seasonal variations were large. Dinophyceae rarely occupied a higher fraction up to 60.4% of the picophytoplankton community. By weekly monitoring at a coastal station for 13 months, it is suggested that phytoplankton communities in coastal waters could be changed on a short time scale. If data are steadily accumulated at the time-series monitoring site for a long time, these will provide important data for understanding the long-term dynamics of phytoplankton as well as the impact of climate and environmental changes.