Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.12.6

The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry  

Hong, Hyun-Hee (School of Biological Sciences and Technology, Chonnam National University)
Lee, Hyun-Gwan (Department of Oceanography, Chonnam National University)
Jo, Jihoon (School of Biological Sciences and Technology, Chonnam National University)
Kim, Hye Mi (Department of Oceanography, Chonnam National University)
Kim, Su-Man (School of Biological Sciences and Technology, Chonnam National University)
Park, Jae Yeon (CO2 Recycling Research Center, Advanced Institutes of Convergence Technology, Seoul National University)
Jeon, Chang Bum (Department of Oceanography, Chonnam National University)
Kang, Hyung-Sik (School of Biological Sciences and Technology, Chonnam National University)
Park, Myung Gil (Department of Oceanography, Chonnam National University)
Park, Chungoo (School of Biological Sciences and Technology, Chonnam National University)
Kim, Kwang Young (Department of Oceanography, Chonnam National University)
Publication Information
ALGAE / v.31, no.4, 2016 , pp. 373-378 More about this Journal
Abstract
Cochlodinium polykrikoides is a red-tide forming dinoflagellate that causes significant worldwide impacts on aquaculture industries and the marine ecosystem. There have been extensive studies on managing and preventing C. polykrikoides blooms, but it has been difficult to identify an effective method to control the bloom development. There is also limited genome information on the molecular mechanisms involved in its various ecophysiology and metabolism processes. Thus, comprehensive genome information is required to better understand harmful algal blooms caused by C. polykrikoides. We estimated the C. polykrikoides genome size using flow cytometry, with detection of the fluorescence of DNA stained with propidium iodide (PI). The nuclear genome size of C. polykrikoides was 100.97 Gb, as calculated by comparing its mean fluorescence intensity (MFI) to the MFI of Mus musculus, which is 2.8 Gb. The exceptionally large genome size of C. polykrikoides might indicate its complex physiological and metabolic characteristics. Our optimized protocol for estimating the nuclear genome size of a dinoflagellate using flow cytometry with PI can be applied in studies of other marine organisms.
Keywords
Cochlodinium polykrikoides; dinoflagellate; flow cytometry; genome size; propidium iodide;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann. Rev. Mar. Sci. 4:143-176.   DOI
2 Beaulieu, J. M., Leitch, I. J., Patel, S., Pendharkar, A. & Knight, C. A. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179:975-986.   DOI
3 Cavalier-Smith, T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 95:147-175.   DOI
4 Curtiss, C. C., Langlois, G. W., Busse, L. B., Mazzillo, F. & Silver, M. W. 2008. The emergence of Cochlodinium along the California Coast (USA). Harmful Algae 7:337-346.   DOI
5 Lin, S. 2011. Genomic understanding of dinoflagellates. Res. Microbiol. 162:551-569.   DOI
6 Hare, E. E. & Johnston, J. S. 2011. Genome size determination using flow cytometry of propidium iodide-stained nuclei. In Hare, E. E. & Johnston, J. S. (Eds.) Molecular Methods for Evolutionary Genetics. Vol. 772. Humana Press, NY, pp. 3-12.
7 Kang, E. J., Kim, J.-H., Kim, K., Choi, H.-G. & Kim, K. Y. 2014. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277.   DOI
8 LaJeunesse, T. C., Lambert, G., Andersen, R. A., Coffroth, M. A. & Galbraith, D. W. 2005. Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J. Phycol. 41:880-886.   DOI
9 Lin, S., Cheng, S., Song, B., Zhong, X., Lin, X., Li, W., Li, L., Zhang, Y., Zhang, H., Ji, Z., Cai, M., Zhuang, Y., Shi, X., Lin, L., Wang, L., Wang, Z., Liu, X., Yu, S., Zeng, P., Hao, H., Zou, Q., Chen, C., Li, Y., Wang, Y., Xu, C., Meng, S., Xu, X., Wang, J., Yang, H., Campbell, D. A., Sturm, N. R., Dagenais-Bellefeuille, S. & Morse, D. 2015. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350:691-694.   DOI
10 Lynch, M. & Conery, J. S. 2003. The origins of genome complexity. Science 302:1401-1404.   DOI
11 Elliott, T. A. & Gregory, T. R. 2015. What's in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20140331.   DOI
12 Dolezel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51:127-128.
13 Dorantes-Aranda, J. J., Garcia-de la Parra, L. M., Alonso-Rodriguez, R., Morquecho, L. & Voltolina, D. 2010. Toxic effect of the harmful dinoflagellate Cochlodinium polykrikoides on the spotted rose snapper Lutjanus guttatus. Environ. Toxicol. 25:319-326.
14 Ebenezer, V. & Ki, J.-S. 2014. Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides. Algae 29:311-319.   DOI
15 Garate-Lizarraga, I. 2013. Bloom of Cochlodinium polykrikoides (Dinophyceae: Gymnodiniales) in Bahia de La Paz, Gulf of California. Mar. Pollut. Bull. 67:217-222.   DOI
16 Gobler, C. J., Berry, D. L., Anderson, O. R., Burson, A., Koch, F., Rodgers, B. S., Moore, L. K., Goleski, J. A., Allam, B., Bowser, P., Tang, Y. & Nuzzi, R. 2008. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7:293-307.   DOI
17 Veldhuis, M. J. W., Cucci, T. L. & Sieracki, M. E. 1997. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J. Phycol. 33:527-541.   DOI
18 Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A. & Anderson, D. M. 2010. The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163-172.   DOI
19 Shoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R., Takeuchi, T., Hisata, K., Tanaka, M., Fujiwara, M., Hamada, M., Seidi, A., Fujie, M., Usami, T., Goto, H., Yamasaki, S., Arakaki, N., Suzuki, Y., Sugano, S., Toyoda, A., Kuroki, Y., Fujiyama, A., Medina, M., Coffroth, M. A., Bhattacharya, D. & Satoh, N. 2013. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23:1399-1408.   DOI
20 Thornhill, D. J., Lajeunesse, T. C. & Santos, S. R. 2007. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol. Ecol. 16:5326-5340.   DOI
21 Vinogradov, A. E. 2004. Evolution of genome size: multilevel selection, mutation bias or dynamical chaos? Curr. Opin. Genet. Dev. 14:620-626.   DOI
22 Wisecaver, J. H. & Hackett, J. D. 2011. Dinoflagellate genome evolution. Annu. Rev. Microbiol. 65:369-387.   DOI
23 Gregory, T. R., Nicol, J. A., Tamm, H., Kullman, B., Kullman, K., Leitch, I. J., Murray, B. G., Kapraun, D. F., Greilhuber, J. & Bennett, M. D. 2007. Eukaryotic genome size databases. Nucleic Acids Res 35(Suppl. 1):D332-D338.   DOI
24 Gregory, S. G., Sekhon, M., Schein, J., Zhao, S., Osoegawa, K., Scott, C. E., Evans, R. S., Burridge, P. W., Cox, T. V., Fox, C. A., Hutton, R. D., Mullenger, I. R., Phillips, K. J., Smith, J., Stalker, J., Threadgold, G. J., Birney, E., Wylie, K., Chinwalla, A., Wallis, J., Hillier, L., Carter, J., Gaige, T., Jaeger, S., Kremitzki, C., Layman, D., Maas, J., McGrane, R., Mead, K., Walker, R., Jones, S., Smith, M., Asano, J., Bosdet, I., Chan, S., Chittaranjan, S., Chiu, R., Fjell, C., Fuhrmann, D., Girn, N., Gray, C., Guin, R., Hsiao, L., Krzywinski, M., Kutsche, R., Lee, S. S., Mathewson, C., McLeavy, C., Messervier, S., Ness, S., Pandoh, P., Prabhu, A.-L., Saeedi, P., Smailus, D., Spence, L., Stott, J., Taylor, S., Terpstra, W., Tsai, M., Vardy, J., Wye, N., Yang, G., Shatsman, S., Ayodeji, B., Geer, K., Tsegaye, G., Shvartsbeyn, A., Gebregeorgis, E., Krol, M., Russell, D., Overton, L., Malek, J. A., Holmes, M., Heaney, M., Shetty, J., Feldblyum, T., Nierman, W. C., Catanese, J. J., Hubbard, T., Waterston, R. H., Rogers, J., de Jong, P. J., Fraser, C. M., Marra, M., McPherson, J. D. & Bentley, D. R. 2002. A physical map of the mouse genome. Nature 418:743-750.   DOI
25 Gregory, T. R. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. Camb. Philos. Soc. 76:65-101.   DOI
26 Gregory, T. R. 2002. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution 56:121-130.   DOI
27 Gregory, T. R. & Witt, J. D. S. 2008. Population size and genome size in fishes: a closer look. Genome 51:309-313.   DOI
28 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
29 Wolny, J. L., Scott, P. S., Tustison, J. & Brooks, C. R. 2015. Monitoring the 2007 Florida east coast Karenia brevis (Dinophyceae) red tide and neurotoxic shellfish poisoning (NSP) event. Algae 30:49-58.   DOI
30 Zingone, A. & Enevoldsen, H. O. 2000. The diversity of harmful algal blooms: a challenge for science and management. Ocean Coast. Manage. 43:725-748.   DOI
31 Guo, R., Wang, H., Suh, Y. S. & Ki, J.-S. 2016. Transcriptomic profiles reveal the genome-wide responses of the harmful dinoflagellate Cochlodinium polykrikoides when exposed to the algicide copper sulfate. BMC Genomics 17:29.   DOI