• Title/Summary/Keyword: Conventional screening system

Search Result 54, Processing Time 0.022 seconds

A Study on the Sensory Characteristic of Yogurt and Antimicrobial Activity of Lactobacillus plantarum LHC52 Isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum LHC52의 항균활성과 요구르트의 관능성 연구)

  • Lee, Seung-Gyu;Han, Ki-Sung;Jeong, Seok-Geun;Oh, Mi-Hwa;Jang, Ae-Ra;Kim, Dong-Hun;Bae, In-Hyu;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.328-335
    • /
    • 2010
  • The aim of our study was to develop a new starter culture for fermented milk. Polymerase chain reaction screening of 103 acid-producing isolates from Kimchi identified 72 Lactobacillus strains. The ability of the strains to inhibit the growth of the food-borne human pathogens (Escherichia coli, Salmonella Enteritidis, Staphylococcus aureus) was measured, using a conventional paper disk method. Among the 72 strains, strain LHC52 displayed potent antagonistic activity. Use of 16S rDNA sequencing and the API 50CHL system identified the strain as Lactobacillus plantarum and it was designated L. plantarum LHC52. Biochemical analyses revealed especially high antibacterial activity against E. coli. Yogurt produced using L. plantarum LHC52 did not show different microbiological and physicochemical properties compared to conventionally-prepared yogurt, implicating L. plantarum LHC52 as a useful, potently antibacterial starter culture for yogurt preparation.

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.

Standardization and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Beg, Mirza Belal;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Suhail, Habiba;Kazmi, Munawwar Husain
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.4.1-4.8
    • /
    • 2021
  • Background: The Unani system of medicine has been practised since centuries for the treatment of a range of diseases. In spite of their efficacy they have been widely criticised due to the lack of standardization and poor quality control. Standardization of Unani medicine is a valuable issue at the present because they are very prone to contamination, deterioration, adulteration and variation in composition due to biodiversity as well as careless collection. Objective: To Standardize and Development of HPTLC Fingerprinting of a polyherbal Unani formulation Qurs-e-Safa. Materials and methods: The conventional and modern analytical techniques were used to standardise Qurs-e-Safa. The study was carried into three different batches of Qurs-e-Safa prepared with its ingredients. The parameters studied are organoleptic, microscopic, physicochemical parameters, phytochemical screening, TLC, HPTLC profile, aflatoxin, microbial load and heavy metal analysis. Results and conclusion: Qurṣ-e-Sa'fa is dark yellow in colour and aromatic smell. Uniformity of diameter and weight variation were found to be 13 ± 0, and 524.7 ± 1.72 mg. friability, hardness and disintegration time of all 3 batches were found to be (0.0615 ± 0.004, 0.0885 ± 0.0047 and 0.0725 ± 0.0058), (3.5 ± 0.2886, 3.67 ± 0.1674 and 3.67 ± 0.1674) and (16 to 17 minutes). Extractive value were found to be maximum in distilled water (38.488 ± 0.20, 37.3824 ± 0.38 and 39.8177 ± 0.13) followed by alcohol (27.5406 ± 0.54, 27.5656 ± 0.32 and 26.9229 ± 0.25). Loss of weight on drying, pH, total ash, acid insoluble ash, qualitative test was set in. Phytochemical screening revealed the presence of Carbohydrates, Phenols, Resins, Proteins, Steroids, fixed oil and Flavonoids. The microbial load was found absent and heavy metals were within permissible limits. The data evolved from the study may serve as a reference to validate and also help in the quality control of other finished products in future research.

A Literature Study about Clinical Outcome Parameters for Total Knee Replacement to Develop Core Outcome Set for Osteoarthritis by Korean Medicine Treatment (슬관절 전치환술 후 한의 핵심 결과 지표를 개발하기 위한 임상 평가지표에 대한 문헌 연구)

  • Jeon, Chaeheun;Kim, Hyejin;Lee, Jungmin;Kwon, Miri;Jang, Seungwon;Kim, Hyunho;Kong, Byunghee;Leem, Jungtae
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.3
    • /
    • pp.51-60
    • /
    • 2019
  • Objectives Osteoarthritis is hard to manage with both conventional and Korean medicine treatment. The core outcome set (COS) to demonstrate the effectiveness of Korean medicine treatment has not been established yet. We aimed to present preliminary data of COS by performing a literature review on the evaluation indices used in existing clinical research. Methods We examined the literature from 2000 to 2017 in two Korean electronic databases (Korea citation index and oriental medicine advanced searching integrated system) by searching for the following 3 terms 'total knee replacement (Korean)', 'total knee replacement,' and 'knee surgery.' We found 333 articles; among them, 50 duplicates were removed. Finally, we selected 160 articles after complete screening. We then extracted measured indices and clinical outcomes from the selected articles and categorized the relevant criteria. Results According to this study, the hospital for special surgery and knee society, range of movement angle, cross leg, Berg balance scale and balance ability, muscle strength, 6 minutes walking test, visual analogue scale, self-efficacy, the 12-item and 36-item short form survey and self-rated health status are the most commonly used outcomes of knee. Conclusions This study found that the several categories after total knee replacement (TKR) are being evaluated in the literature, and we were able to verify the most frequently used evaluation indices in these categories. The results of this study will be used to establish evaluation indices for the treatment of TKR in the future using Korean medicine.

Novel Discovery of LINE-1 in a Korean Individual by a Target Enrichment Method

  • Shin, Wonseok;Mun, Seyoung;Kim, Junse;Lee, Wooseok;Park, Dong-Guk;Choi, Seungkyu;Lee, Tae Yoon;Cha, Seunghee;Han, Kyudong
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.87-95
    • /
    • 2019
  • Long interspersed element-1 (LINE-1 or L1) is an autonomous retrotransposon, which is capable of inserting into a new region of genome. Previous studies have reported that these elements lead to genomic variations and altered functions by affecting gene expression and genetic networks. Mounting evidence strongly indicates that genetic diseases or various cancers can occur as a result of retrotransposition events that involve L1s. Therefore, the development of methodologies to study the structural variations and interpersonal insertion polymorphisms by L1 element-associated changes in an individual genome is invaluable. In this study, we applied a systematic approach to identify human-specific L1s (i.e., L1Hs) through the bioinformatics analysis of high-throughput next-generation sequencing data. We identified 525 candidates that could be inferred to carry non-reference L1Hs in a Korean individual genome (KPGP9). Among them, we randomly selected 40 candidates and validated that approximately 92.5% of non-reference L1Hs were inserted into a KPGP9 genome. In addition, unlike conventional methods, our relatively simple and expedited approach was highly reproducible in confirming the L1 insertions. Taken together, our findings strongly support that the identification of non-reference L1Hs by our novel target enrichment method demonstrates its future application to genomic variation studies on the risk of cancer and genetic disorders.

Deep Learning Based Side-Channel Analysis for Recent Masking Countermeasure on SIKE (SIKE에서의 최신 마스킹 대응기법에 대한 딥러닝 기반 부채널 전력 분석)

  • Woosang Im;Jaeyoung Jang;Hyunil Kim;Changho Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • Recently, the development of quantum computers means a great threat to existing public key system based on discrete algebra problems or factorization problems. Accordingly, NIST is currently in the process of contesting and screening PQC(Post Quantum Cryptography) that can be implemented in both the computing environment and the upcoming quantum computing environment. Among them, SIKE is the only Isogeny-based cipher and has the advantage of a shorter public key compared to other PQC with the same safety. However, like conventional cryptographic algorithms, all quantum-resistant ciphers must be safe for existing cryptanlysis. In this paper, we studied power analysis-based cryptographic analysis techniques for SIKE, and notably we analyzed SIKE through wavelet transformation and deep learning-based clustering power analysis. As a result, the analysis success rate was close to 100% even in SIKE with applied masking response techniques that defend the accuracy of existing clustering power analysis techniques to around 50%, and it was confirmed that was the strongest attack on SIKE.

The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms (단층 및 입체 세포배양환경에서 세슘, 스트론튬 및 코발트가 세포 독성에 미치는 영향 분석)

  • Kim, Gi Yong;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • Currently, there are 442 operating nuclear power plants in the world, and 62 more are under construction. According to this reasoning, the treatment of radioactive waste is important to prevent the environmental ecosystem including humans, animals, and plants. Especially, a leakage of radioactive waste causes not only regional problem but also serious global one. In this study, we demonstrate the effect of radioisotopes (e.g., cesium, strontium, and cobalt) on a 3D culture cell. To develop the 3D cell culture system, we used a 96-well-culture plate with biocompatible agarose hydrogel. Using this method, we can perform the 3D cell culture system with three different cell lines such as HeLa, HepG2, and COS-7. In addition, we conducted a cell viability test in the presence of radioisotopes. Interestingly, the 3D morphological cells showed 42% higher cell viability than those on the 2D against cesium. This result indicates that the 3D platform provides cells morphological and physiological characteristic similar to in vivo grown tissues. Moreover, it overcomes the limitation of conventional cell culture system that can't reflect in vivo systems. Finally, we believe that the proposed approach can be applied a new strategy for simple high-throughput screening and accurate evaluation of metal toxicity assay.

Development and Assesment of an Embedded Portable A-ABR System (임베디드 기반의 휴대용 A-ABR 시스템 개발 및 평가)

  • Noh, Hyung-Wook;Nam, Ki-Chang;Jang, Kyung-Hwan;Cha, Eun-Jong;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.48-55
    • /
    • 2010
  • Hearing impairment is one of the most common birth defects among infants. Significant bilateral hearing impairment have profound effects on speech and language development. But it can be prevented, if a hearing impairment is identified and treated in its early stage. ABR (auditory brainstem response) is useful screening tool for new born hearing test. However, the interpretation of conventional ABR should be done by a experienced audiologist and testing takes some time. Therefore, A-ABR(automated ABR) which detect ABR peak automatically have been developed recently. In contrast to A-ABR researches became active in overseas, there has been little study in Korea. In this study, we have developed a portable A-ABR system based on the results of our previous study. For the evaluation of the developed system, the clinical trials were performed on adults and infants. As a results, it showed good sensitivity (94.4%) and specificity (92.2%), and accuracy (93.0%) between clinical diagnosis and the developed A-ABR test.

Establishment of Neurotoxicity Assessment Using Microelectrode Array (MEA) with hiPSC-Derived Neurons and Evaluation of New Psychoactive Substances (NPS)

  • Kyu-ree Kang;C-Yoon Kim;Jin Kim;Bokyeong Ryu;Seul-Gi Lee;Jieun Baek;Ye-Ji Kim;Jin-Moo Lee;Yootmo Lee;Sun-Ok Choi;Dong Ho Woo;Il Hwan Park;Hyung Min Chung
    • International Journal of Stem Cells
    • /
    • v.15 no.3
    • /
    • pp.258-269
    • /
    • 2022
  • Background and Objectives: Currently, safety pharmacological tests for the central nervous system depend on animal behavioral analysis. However, due to the subjectivity of behavioral analysis and differences between species, there is a limit to appropriate nervous system toxicity assessment, therefore a new neurotoxicity assessment that can simulate the human central nervous system is required. Methods and Results: In our study, we developed an in vitro neurotoxicity assessment focusing on neuronal function. To minimize the differences between species and fast screening, hiPSC-derived neurons and a microelectrode array (MEA) that could simultaneously measure the action potentials of the neuronal networks were used. After analyzing the molecular and electrophysiological characters of our neuronal network, we conducted a neurotoxicity assessment on neurotransmitters, neurotoxicants, illicit drugs, and new psychoactive substances (NPS). We found that most substances used in our experiments responded more sensitively to our MEA-based neurotoxicity assessment than to the conventional neurotoxicity assessment. Also, this is the first paper that evaluates various illicit drugs and NPS using MEA-based neurotoxicity assessment using hiPSC-derived neurons. Conclusions: Our study expanded the scope of application of neurotoxicity assessment using hiPSC-derived neurons to NPS, and accumulated evaluation data of various toxic substances for hiPSC-derived neurons.

Comparison of Average Glandular Dose in Screen-Film and Digital Mammography Using Breast Tissue-Equivalent Phantom (유방조직등가 팬텀을 이용한 Screen-Film과 Digital Mammography에서의 평균 유선선량)

  • Shin, Gwi-Soon;Kim, Jung-Min;Kim, You-Hyun;Choi, Jong-Hak;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.13-23
    • /
    • 2007
  • In recent years, mammography system is changed rapidly from conventional screen-film system to digital system for application to screening and diagnosis. Digital mammography system provides several advantages over screen-film mammography system. According to the information provided by the manufacturer, digital mammography system offers radiation dose reduction in comparison with screen-film mammography system, because of digital detector, particularly direct digital detector has higher x-ray absorption efficiency than screen-film combination or imaging plate(IP). We measured average glandular doses(AGD) in screen-film mammography(SFM) system with slow screen-film combination, computed mammography(CM) system, indirect digital mammography(IDM) system and direct digital mammography(DDM) system using brest tissue-equivalent phantom(glandularity 30%, 50% and 70%). The results were shown as follows : AGD values for DDM system were highest than those for other systems. Although automatic exposure control(AEC) mode was selected, the curve of the AGD values against thickness or glandularity increased significantly for the SFM system with the uniform target/filter(Mo/Mo) combination. Therefore, the AGD values for the high energy examinations were highest in the SFM system, and those for the low energy examinations were highest in the DDM system. But the curve of the AGD values against thickness and glandularity increased gently for CM system with the automatic selection of the target/filter combination (from Mo/Mo to Mo/Rh or from Mo/Rh to Rh/Rh), and the AGD values were lowest. Consequently, the parameters in mammography for each exposure besides detection efficiency play an important role in oder to estimate a patient radiation dose.

  • PDF