• Title/Summary/Keyword: Conventional observation

Search Result 493, Processing Time 0.026 seconds

Surface Transformation Hardening for Rod-shaped Carbon Steels by High Power Diode Laser (고출력 다이오드 레이저(HPDL)를 이용한 탄소강 환봉의 표면변태경화)

  • Kim, Jong-Do;Kil, Byung-Lea;Kang, Woon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.961-969
    • /
    • 2007
  • The laser material processing has replaced a conventional material processing such as a welding, cutting, drilling and surface modification and so on. LTH(Laser Transformation Hardening) is one branch of the laser surface modification process. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power intensity comparatively. The absorptivity of the laser energy with respect to material depends on the wave length of a beam. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser(HPDL) whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

Accuracy Assessment for GPS Aerial Triangulation (GPS 항공삼각측량의 정확도 분석)

  • 임삼성;김충평;노현호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 1998
  • In this study, we utilized various type of GPS observation measurements to get a camera projection center of the aerial triangulation and consequently to determine which type is acceptable. For the accuracy and the error analysis, comparison between a projection center from the conventional model adjustment and the result determined by the kinematic DGPS positioning which is fitted to the conventional model adjustment using 3D conformal transformation method has been made. The camera projection center is located within a $\pm{2m}$ for C/A code range measurements, $\pm{14cm}$ for L1 phase measurements and $\pm{10cm}$ for L1/L2 phase measurements with $1\sigma$. In this way, the accuracy of the camera projection center by the bundle block adjustment can be predicted.

  • PDF

An Improved Early Detection of all-zero DCT Coefficients for fast Video Encoding (고속 동영상 압축을 위한 개선된 DCT 및 양자화 과정 생략 방식)

  • 김규영;문용호;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8C
    • /
    • pp.779-787
    • /
    • 2003
  • In this paper, we propose an improved early detection of all-zero DCT coefficients for fast video encoding. From the experimental observation, it is shown that the performance of the conventional method is limited because of the imprecision sufficient condition. When the calculation of the SAD in motion estimation is simply modified, more precise sufficient condition is derived from the theoretical analysis. Based on this idea, DCT and the quantization stages are effectively skipped in the proposed algorithm with no image degradation. The simulation results show that the proposed algorithm achieves computational saving over 10% compared to the conventional method.

An Improved Early Detection of all-zero DCT Coefficients for East Video Encoding (고속 동영상 압축을 위한 개선된 DCT 및 양자화 과정 생략 방식)

  • 김규영;문용호;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.696-704
    • /
    • 2003
  • In this paper, we propose an improved early detection of all-zero DCT coefficients for fast video encoding. From the experimental observation, it is shown that the performance of the conventional method is limited because of the imprecision sufficient condition. When the calculation of the SAD in motion estimation is simply modified, more precise sufficient condition is derived from the theoretical analysis. Based on this idea, DCT and the quantization stages are effectively skipped in the proposed algorithm with no image degradation. The simulation results show that the proposed algorithm achieves computational saving over 10% compared to the conventional method.

Possibility of applying unmanned aerial vehicle (UAV) and mapping software for the monitoring of waterbirds and their habitats

  • Han, Yong-Gu;Yoo, Seung Hwa;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.41 no.5
    • /
    • pp.145-151
    • /
    • 2017
  • Background: Conventional bird observation methods are line survey or point count method by bare eyes or through binoculars or telescopes. But in this study, the possibility of monitoring waterbirds using drones beyond the conventional research methods was explored. It also describes the direction of producing and accumulating images of waterbird habitats as a method to efficiently determine changes in waterbird habitats. Results: From the study, it was concluded that waterbird monitoring using drones was a new monitoring technique which could be applied to the field and 26 kinds of waterbirds were observed. In the case of a drone with a single lens, it was difficult to identify objects because the size of the subject was too small at a certain altitude. In this case, zoom lens can be an alternative. It has also been verified that image analysis software can be used to accumulate images of waterbird habitats. Conclusions: If various kinds of advanced drones and cameras are used, it would be possible to monitor larger areas including the areas that are difficult for human access and to observe more waterbirds and wider habitats.

A Novel MPPT Control of a Photovoltaic System using an FLC Algorithm

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.17-25
    • /
    • 2014
  • This paper proposes a novel maximum power point tracking (MPPT) system using a fuzzy logic control (FLC) algorithm for robust in-environment changing. The power available at the output of a photovoltaic (PV) cell continues to change with radiation and temperature because a solar cell exhibits nonlinear current-voltage characteristics. Therefore, the maximum power point (MPP) of PV cells varies with radiation and temperature. The MPPT methods are used in PV systems to make full utilization of the PV array output power, which depends on radiation and temperature. The conventional MPPT control methods such as constant voltage (CV), perturbation and observation (PO) and incremental conductance (IC) have been studied but these methods are problematic in that they fail to take into account the changing environment. The proposed FLC controller is based on the fuzzy control algorithm and facilitates robust control with the environmental changes. Also, the PV systems applied FLC controller is modeled by PSIM and the response characteristics of the FLC method according to environmental variations are analyzed through comparison with the performance of conventional methods. The validity of this controller is shown through response results.

MPPT Control of Photovoltaic System using HBPI Controller (HBPI 제어기를 이용한 태양광발전 시스템의 MPPT 제어)

  • Ko, Jae Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1864-1871
    • /
    • 2012
  • This paper proposes the hybrid proportional integral(HBPI) controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, in order to solve these problems, this paper proposes HBPI controller that is adjusted gain of conventional PI control using fuzzy control, and the maximum power point tracks using this controller. The validity of the controller proposed in this paper proves through the results of the comparisons.

Vision-based hand Gesture Detection and Tracking System (비전 기반의 손동작 검출 및 추적 시스템)

  • Park Ho-Sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1175-1180
    • /
    • 2005
  • We present a vision-based hand gesture detection and tracking system. Most conventional hand gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Therefore, we propose a statistical method to recognize and detect hand regions in images using geometrical structures. Also, Our hand tracking system employs multiple cameras to reduce occlusion problems and non-synchronous multiple observations enhance system scalability. In this experiment, the proposed method has recognition rate of $99.28\%$ that shows more improved $3.91\%$ than the conventional appearance method.

A Novel MPPT Control of PV MIC System Considering the Shaded Effect (그림자 영향을 고려한 PV MIC 시스템의 새로운 MPPT 제어)

  • Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the new maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. Particularly, MIC system is very sensitive to the shadow influence because the capacity is very small. In order to increase an output and efficiency of the solar power generation, the maximum power point(MPP) obeying control are necessary. Conventional perturbation and observation(PO) and Incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the new control algorithm of the multi-level in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved. through the output error response characteristics.

Improving Covariance Based Adaptive Estimation for GPS/INS Integration

  • Ding, Weidong;Wang, Jinling;Rizos, Chris
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.259-264
    • /
    • 2006
  • It is well known that the uncertainty of the covariance parameters of the process noise (Q) and the observation errors (R) has a significant impact on Kalman filtering performance. Q and R influence the weight that the filter applies between the existing process information and the latest measurements. Errors in any of them may result in the filter being suboptimal or even cause it to diverge. The conventional way of determining Q and R requires good a priori knowledge of the process noises and measurement errors, which normally comes from intensive empirical analysis. Many adaptive methods have been developed to overcome the conventional Kalman filter's limitations. Starting from covariance matching principles, an innovative adaptive process noise scaling algorithm has been proposed in this paper. Without artificial or empirical parameters to be set, the proposed adaptive mechanism drives the filter autonomously to the optimal mode. The proposed algorithm has been tested using road test data, showing significant improvements to filtering performance.

  • PDF