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Abstract 
 

It is well known that the uncertainty of the covariance parameters of the process noise (Q) and the observation 
errors (R) has a significant impact on Kalman filtering performance. Q and R influence the weight that the filter 
applies between the existing process information and the latest measurements. Errors in any of them may result in the 
filter being suboptimal or even cause it to diverge. The conventional way of determining Q and R requires good a 
priori knowledge of the process noises and measurement errors, which normally comes from intensive empirical 
analysis. Many adaptive methods have been developed to overcome the conventional Kalman filter’s limitations. 
Starting from covariance matching principles, an innovative adaptive process noise scaling algorithm has been 
proposed in this paper. Without artificial or empirical parameters to be set, the proposed adaptive mechanism drives 
the filter autonomously to the optimal mode. The proposed algorithm has been tested using road test data, showing 
significant improvements to filtering performance.   
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1. Introduction 
 

Integrated positioning and navigation systems using GPS 
receivers and INS sensors have demonstrated great application 
potential in the areas of real-time navigation, mobile surveying 
and mapping, and location based services. Besides providing a 
full solution of position and attitude, the other benefits of 
integrating GPS and INS include the long term high positioning 
accuracy, the high update rate, the robustness to GPS signal jitter 
and interference, and the continuous calibration of INS errors. 
Despite various integration architectures, the central challenge of 
implementing such integrated systems is how well the GPS and 
INS measurement data can be fused to generate the optimal 
solution. 

 
The Kalman filter (KF) is the most common technique for 

carrying out this task. The operation of the KF relies on the 
proper definition of a dynamic model and a stochastic model 
(Brown and Hwang, 1997). The dynamic model describes the 
propagation of system states over time. The stochastic model 
describes the stochastic properties of the system process noise 
and observation errors.  

 
The uncertainty of the covariance parameters of the process 

noise (Q) and the observation errors (R) has a significant impact 
on the Kalman filtering performance (Grewal and Andrews, 
1993; Grewal and Weil, 2001; Salychev, 2004). Q and R 
influence the weight that the filter applies between the existing 
process information and the latest measurements. Errors in any 
of them may result in the filter being suboptimal or even cause it 
to diverge. 

 
The conventional way of determining Q and R requires good a 

priori knowledge of the process noise and measurement errors, 
which typically comes from intensive empirical analysis. In 
practice, the values are generally fixed and applied during whole 
application segment. The performance of the integrated systems 

suffers in two respects due to this inflexibility. First, process 
noise and measurement errors are dependent on the application 
environment and process dynamics. A precise evaluation of these 
in advance is unlikely to be possible. Second, the so-called KF 
“tuning” process is complicated, which is left to a few experts, 
and thus hampers its successful application across wider fields.   

 
Many adaptive methods have been developed to overcome the 

conventional KF’s limitations. Popular adaptive methods can be 
roughly classified into covariance scaling, multi-model adaptive 
estimation, and adaptive stochastic modelling (Hide et al., 
2004a). The covariance scaling method improves the filter 
stability and convergent performance by introducing a 
multiplication factor to the state covariance matrix. The 
calculation of the scaling factor can either be fully empirical or 
based on some criteria derived from filter innovations (Hu et al., 
2003; Yang, 2005; Yang and Gao, 2006; Yang and Xu, 2003). 
The multi-model adaptive estimation method requires a bank of 
simultaneously operating Kalman filters in which different 
stochastic models are employed. The output of multi-model 
adaptive estimation is the weighted sum of each individual 
filter’s output. The weighting factor can be calculated using the 
residual probability function (Brown and Hwang, 1997; Hide et 
al., 2004b). Adaptive stochastic modelling includes innovation-
based adaptive modelling (Mohamed and Schwarz, 1999) and 
residual-based adaptive modelling (Wang, 2000; Wang et al., 
1999). It is well known that the innovation and residual 
sequences of the KF are a reliable indicator of the KF filtering 
performance. For an optimal filter, the innovation and residual 
sequences are white Gaussian noise (Brown and Hwang, 1997; 
Mehra, 1970). By online monitoring of the innovation and 
residual covariance, the adaptive stochastic modelling algorithm 
estimates directly the covariance matrices of process noise and 
measurement errors, and tunes them in real-time.  

 
The online stochastic modelling method has been investigated 

for GPS/INS integration, and some initial results have been 
published (e.g. Ding et al., 2006). Besides the successful 



implementation and test, one limitation is that the estimation 
algorithm is very sensitive to colour noise and a change in the 
observed satellites. Theoretically, this sensitivity can be due to 
two reasons. First, the covariance estimation of the innovation 
and residual sequences is very noisy due to the use of a short 
data segment, the coloured noises, and the non-stationary noise 
property during a short time span. On the other hand, smoothing 
covariance estimation by increasing the estimation window size 
would degrade the dynamic response of the adaptive mechanism. 
Secondly, with a limited number of rough covariance 
observations it is difficult to derive precise process noise and 
observation error estimates. Considering the large matrix 
dimension of process noise when the INS Psi model is used, full 
estimation becomes virtually impossible.   

 
Hence, a more robust algorithm with fewer adaptive 

parameters is desirable. Starting from the covariance matching 
principles, an innovative process noise scaling algorithm has 
been developed. Without artificial or empirical parameters to be 
set, the proposed adaptive mechanism has the ability to drive the 
filter autonomously to the optimal mode. This proposed 
algorithm has been analysed using road test data. Significant 
improvements to the filtering performance have been noticed.  

 
In Section 2, the Kalman filter and the online stochastic 

modelling algorithm are introduced. Then a new covariance 
based process noise scaling method is derived. The test results 
are presented in Section 3. 

 
 

2. Adaptive Kalman filtering 
 

2.1 Conventional Kalman filter 
 
Considering a multivariable linear discrete system for the 

integrated GPS/INS system: 
 

 1 1 1k k k k− − −= +x Φ x w  (1) 

 k k k k= +z H x v  (2) 
 
where kx is (n×1) state vector, kΦ  is (n×n) transition 

matrix, kz  is (r×1) observation vector, kH is (r×n) observation 
matrix. 

kw and kv are uncorrelated white Gaussian noise sequence 
with means and covariances: 
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where {}E ⋅ denotes the expectation function. kQ and kR are 
covariance matrix of process noise and observation errors, 
respectively. The KF state prediction and state covariance 
prediction are: 
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where kx̂ denotes the KF estimated state vector; kˆ −x the 

predicted state vector for the next epoch; kP̂ the estimated state 

covariance matrix; and k
ˆ −P the predicted state covariance matrix. 

The Kalman measurement update algorithms are: 
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where kK is the Kalman gain, which defines the updating 

weight between new measurements and predictions from the 
system dynamic model.  

 
The innovation sequence is defined as:   

 
 k k k kˆ −= −d z H x  (6) 
 
and the  residual sequence as: 

 
 k k k kˆ= −ε z H x  (7) 

 
 

2.2 Online stochastic modelling 
 
Since the Kalman filtering is equivalent to a recursive least 

squares estimation process, the KF measurement update can be 
rewritten in the form of (e.g., Wang et al., 1999): 
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where vector k

−e  denotes the state prediction errors, and I the 
identity matrix. Equation (8) shows that at each epoch, the filter 
update is an optimal blending of existing information from the 
predicted states and the information of the new measurements. 
The associated covariance matrix is: 
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where l is the observation vector, and A the design matrix. The 

optimal estimation of the states is: 
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The least squares estimation residual is: 
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By applying the error propagation law to the above equation, 

one obtains: 
 

 { } { }T T T
k k k k k k k

ˆE E= −ε ε v v H P H  (13) 
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When the residual covariance { }T

k kE ε ε is available, the 

covariance of the observation error kR̂ can be estimated directly 
from equation (14). Calculation of the residual covariance 

{ }T
k kE ε ε  normally uses a limited number of samples of the 

innovation sequence:  
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where m is the ‘estimation window size’. For equation (15) to 

be valid, the residual sequence has to be ergodic and stationary 
over the m steps. The result of equation (15) is unbiased 
estimates of the autocorrelation (equivalent to covariance with 
zero mean) of the residual sequence (Papoulis, 1991). The 
estimation converges to the true value as the window size 
becomes larger. However, large window size and the stationary 
condition are contradictory requirements for kinematic GPS/INS 
applications. Choosing an appropriate window size is a trade-off 
between estimation stability and estimation accuracy (Ding et al., 
2006; Wang et al. 1999).   

 
As discussed earlier, practical implementation of an online 

stochastic modelling algorithm faces many challenges. One 
critical factor influencing stochastic modelling accuracy is 
ensuring precise and smooth estimation of the innovation and 
residual covariance from data sets with limited length. 
Furthermore, the stochastic parameters are closely coupled with 
each other when using current estimation algorithms (Ding et al., 
2006), which makes the correct estimation more difficult.  

 
 

2.2 Scaling of process noise 
 
To improve the robustness of the adaptive filtering algorithm 

to innovation (and residual) covariance estimation bias, a new 
process noise scaling method is proposed here. From equation 
(6), the predicted covariance of the innovation sequence can be 
expressed as:  

 
 T

k k k k k
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In addition, the real covariance of the innovation sequence can 

be approximated using: 
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For an optimal filter, the predicted innovation covariance 

should be equal to the one directly calculated from the 

innovation sequence. Any deviation between them can be 
ascribed to the wrong definition of k

ˆ −P and/or kR . Attempting to 
resolve two variable matrices with one constraint is not practical, 
as discussed above. Considering that the performance of the  
Kalman filter relies on the relative magnitudes of k

ˆ −P and kR , 

and kR has several other ways to be assessed in GPS/INS 

integration, kR is assumed to be perfectly known for adaptation 
purposes. So,  
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where k

−P denotes the estimation of the process noise 

prediction. Attempting to directly resolve the k
−P from equation 

(18) is not practical, although a partial adaptation might be 
possible.  

 
To simplify, define the scaling factor as:  
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where the scaling factorα  implies a rough ratio between the 

calculated innovation covariance and the predicted one. Since  
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after substituting equation (20) into equation (19), α  can be 

expressed as:  
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Based on equations (19) and (21), an intuitive adaptation rule 

is defined as: 
 

 1k k
ˆ α−=Q Q  (22) 

 
The square root in equation (22) is used to contribute a 

smoothing effect, which is not essential. Directly 
tuning k

ˆ −P based on equation (19) is not considered due to the 
concerns of its effect on filtering smoothness and parameter 
consistency.  

 
Compared with existing process noise scaling methods, the 

distinct feature of this proposed algorithm is that α  can be a 
scaling factor either larger than one or smaller than one, which 
provides a full range of options to tune kQ̂ . Only when the 
predicted innovation covariance and the calculated innovation 
covariance are consistently equal, α  is stabilised at value one.  

 
The innovation covariance still needs to be estimated using 

equation (17). When compared with the adaptive stochastic 
modelling method, the process noise scaling method is more 
robust to covariance estimation bias due to fewer parameters 



involved in the tuning, and the tuning is a smooth feedback. 
However, since only the overall magnitude of kQ̂ is tuned rather 
than individual elements, optimal allocation of noise to each 
individual source can not be achieved. This is one fundamental 
difference between the adaptive stochastic modelling methods 
and the covariance scaling methods.  

 
 

3. Testing  
 

3.1 Test Configuration 
 
The tests involved two sets of Leica System 530 GPS 

receivers and one BEI C-MIGITS II (DQI-NP) INS unit. One of 
the GPS receivers was set up as static reference station, and the 
other one on top of the test vehicle together with the INS unit. 
The data were stored on the GPS receiver’s PCMCIA card and a 
Notebook PC for post processing. The BEI’s C-MIGITS II has 
its own GPS receiver (the MicroTracker) to synchronise the INS 
data to GPS time.  

 
Table 1 shows the DQI-NP’s technical data for reference. The 

specified parameters were used in setting up the Q estimation in 
the standard Kalman filtering process. Figure 1 shows the ground 
track of the test vehicle. 

 
Table 1. DQI-NP’s technical data 

 
 Gyro Accelerometer 

Bias 5 deg/hr 500 µg 
Scale factor 500 ppm 800 ppm 

Random walk/ 
white noise 

0.035 deg/sqrt(hr) 180 µg/sqrt(hr) 
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Figure 1. Ground track of the test vehicle 

 
 

3.2 Data and analysis 
 
Figure 2 shows the RMSs of the adaptive Kalman filter’s 

states derived from the covariance matrix kP̂ . Only the RMS 
values of the first three diagonal elements have been shown. The 
trends for the remaining states are similar. It is clear that the 
overall filter operation is stable and converged. The bump at 
about 100 epochs indicates the effectiveness of the adaptive 
process noise scaling algorithm. The window size used for the 
innovation covariance calculation is 64.  

 

Figure 3 shows the history of the estimated scaling factor 
evolving with time. As expected, after the initial turbulence, the 
scaling factor quickly settles to a value of about one. 

 
For the optimal Kalman filter, both innovation and residual 

magnitudes should be minimised. Figure 4(a) shows that the 
magnitude of the innovations is within 0.1m. After measurement 
update, the magnitude of residuals is within 0.02m, as illustrated 
in Figure 4(b). Since the necessary and sufficient condition for 
the optimality of a Kalman filter is that the innovation sequence 
should be white, the autocorrelation of the innovation sequence 
is plotted in Figure 5, which shows clear white noise features. A 
further check of the whiteness can be carried out using the 
method introduced by Mehra (1970).  

 
Figures 6 and 7 show two groups of accelerometer bias and 

gyro bias estimates for comparison purposes. The process noise 
parameters used by the standard extended Kalman filter are 
calculated according to the manufacturer’s technical 
specification. It can be seen that all three configurations have 
generated similar estimates. The standard extended Kalman filter 
provides the smoothest estimation. The estimates using the 
process scaling method are much nosier, which implies that it 
responds quicker to signal changes. The estimates on the Z axis 
have the worst consistency. This may be due to its weak 
observability, since during the tests with the ground vehicle the Z 
axis has the least dynamics. Another reason could be that gravity 
uncertainties were not properly scaled. They may behave 
differently from the INS noises.  
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Figure 2. RMSs of the adaptively estimated Kalman filter 
states 
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Figure 3. The estimated scaling factor sequence 
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Figure 4. (a) Innovation sequence (b) Residual sequence 
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Figure 5. Autocorrelation of innovation sequence (unbiased) 
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Figure 6. Estimates of accelerometer bias using different 

methods (a) Standard Extended KF (b) Extended KF with online 
stochastic modelling (c) Extended KF with the proposed process 

scaling algorithm 
 



0 200 400 600 800 1000
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Epoch

G
yr

o 
bi

as
 d

eg
/s

X
Y
Z

 
(a) 

0 200 400 600 800 1000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Epoch

G
yr

o 
bi

as
 d

eg
/s

X
Y
Z

 
(a) 

0 200 400 600 800 1000
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Epoch

G
yr

o 
bi

as
 in

 d
eg

/s

X
Y
Z

 
Figure 7. Estimates of gyro bias using different methods (a) 

Standard Extended KF (b) Extended KF with online stochastic 
modelling (c) Extended KF with the proposed process scaling 

algorithm 
 

4. Conclusion 
 
Over the past few decades, adaptive KF algorithms have been 

intensively investigated to reduce the uncertainty of the 
covariance matrices of the process noise (Q) and the observation 
errors (R). The covariance matching method is one of the most 
promising solutions. Based on the covariance matching principle, 
the individual Q and R elements can be adaptively estimated 
online using the stochastic modelling method. However, it 
demonstrates vulnerability to the innovation and residual 

covariance estimation biases, and is not scalable to a large 
number of parameters. In this paper, an innovative covariance 
based adaptive process noise scaling method has been proposed 
and tested. This method is reliable, robust, and suitable for 
practical implementations. The initial tests have demonstrated 
significant improvements of the filtering performance. However, 
optimal allocation of noise to each individual source is not 
possible using scaling factor methods, which is a topic for further 
investigation.  
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