• Title/Summary/Keyword: Conventional machine learning

Search Result 286, Processing Time 0.027 seconds

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.

Export-Import Value Nowcasting Procedure Using Big Data-AIS and Machine Learning Techniques

  • NICKELSON, Jimmy;NOORAENI, Rani;EFLIZA, EFLIZA
    • Asian Journal of Business Environment
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • Purpose: This study aims to investigate whether AIS data can be used as a supporting indicator or as an initial signal to describe Indonesia's export-import conditions in real-time. Research design, data, and methodology: This study performs several stages of data selection to obtain indicators from AIS that truly reflect export-import activities in Indonesia. Also, investigate the potential of AIS indicators in producing forecasts of the value and volume of Indonesian export-import using conventional statistical methods and machine learning techniques. Results: The six preprocessing stages defined in this study filtered AIS data from 661.8 million messages to 73.5 million messages. Seven predictors were formed from the selected AIS data. The AIS indicator can be used to provide an initial signal about Indonesia's import-export activities. Each export or import activity has its own predictor. Conventional statistical methods and machine learning techniques have the same ability both in forecasting Indonesia's exports and imports. Conclusions: Big data AIS can be used as a supporting indicator as a signal of the condition of export-import values in Indonesia. The right method of building indicators can make the data valuable for the performance of the forecasting model.

A comparative study of conceptual model and machine learning model for rainfall-runoff simulation (강우-유출 모의를 위한 개념적 모형과 기계학습 모형의 성능 비교)

  • Lee, Seung Cheol;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.563-574
    • /
    • 2023
  • Recently, climate change has affected functional responses of river basins to meteorological variables, emphasizing the importance of rainfall-runoff simulation research. Simultaneously, the growing interest in machine learning has led to its increased application in hydrological studies. However, it is not yet clear whether machine learning models are more advantageous than the conventional conceptual models. In this study, we compared the performance of the conventional GR6J model with the machine learning-based Random Forest model across 38 basins in Korea using both gauged and ungauged basin prediction methods. For gauged basin predictions, each model was calibrated or trained using observed daily runoff data, and their performance was evaluted over a separate validation period. Subsequently, ungauged basin simulations were evaluated using proximity-based parameter regionalization with Leave-One-Out Cross-Validation (LOOCV). In gauged basins, the Random Forest consistently outperformed the GR6J, exhibiting superiority across basins regardless of whether they had strong or weak rainfall-runoff correlations. This suggest that the inherent data-driven training structures of machine learning models, in contrast to the conceptual models, offer distinct advantages in data-rich scenarios. However, the advantages of the machine-learning algorithm were not replicated in ungauged basin predictions, resulting in a lower performance than that of the GR6J. In conclusion, this study suggests that while the Random Forest model showed enhanced performance in trained locations, the existing GR6J model may be a better choice for prediction in ungagued basins.

Data Security on Cloud by Cryptographic Methods Using Machine Learning Techniques

  • Gadde, Swetha;Amutharaj, J.;Usha, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.342-347
    • /
    • 2022
  • On Cloud, the important data of the user that is protected on remote servers can be accessed via internet. Due to rapid shift in technology nowadays, there is a swift increase in the confidential and pivotal data. This comes up with the requirement of data security of the user's data. Data is of different type and each need discrete degree of conservation. The idea of data security data science permits building the computing procedure more applicable and bright as compared to conventional ones in the estate of data security. Our focus with this paper is to enhance the safety of data on the cloud and also to obliterate the problems associated with the data security. In our suggested plan, some basic solutions of security like cryptographic techniques and authentication are allotted in cloud computing world. This paper put your heads together about how machine learning techniques is used in data security in both offensive and defensive ventures, including analysis on cyber-attacks focused at machine learning techniques. The machine learning technique is based on the Supervised, UnSupervised, Semi-Supervised and Reinforcement Learning. Although numerous research has been done on this topic but in reference with the future scope a lot more investigation is required to be carried out in this field to determine how the data can be secured more firmly on cloud in respect with the Machine Learning Techniques and cryptographic methods.

Risk Factor Analysis of Cryopreserved Autologous Bone Flap Resorption in Adult Patients Undergoing Cranioplasty with Volumetry Measurement Using Conventional Statistics and Machine-Learning Technique

  • Yohan Son;Jaewoo Chung
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • Objective : Decompressive craniectomy (DC) with duroplasty is one of the common surgical treatments for life-threatening increased intracranial pressure (ICP). Once ICP is controlled, cranioplasty (CP) with reinsertion of the cryopreserved autologous bone flap or a synthetic implant is considered for protection and esthetics. Although with the risk of autologous bone flap resorption (BFR), cryopreserved autologous bone flap for CP is one of the important material due to its cost effectiveness. In this article, we performed conventional statistical analysis and the machine learning technique understand the risk factors for BFR. Methods : Patients aged >18 years who underwent autologous bone CP between January 2015 and December 2021 were reviewed. Demographic data, medical records, and volumetric measurements of the autologous bone flap volume from 94 patients were collected. BFR was defined with absolute quantitative method (BFR-A) and relative quantitative method (BFR%). Conventional statistical analysis and random forest with hyper-ensemble approach (RF with HEA) was performed. And overlapped partial dependence plots (PDP) were generated. Results : Conventional statistical analysis showed that only the initial autologous bone flap volume was statistically significant on BFR-A. RF with HEA showed that the initial autologous bone flap volume, interval between DC and CP, and bone quality were the factors with most contribution to BFR-A, while, trauma, bone quality, and initial autologous bone flap volume were the factors with most contribution to BFR%. Overlapped PDPs of the initial autologous bone flap volume on the BRF-A crossed at approximately 60 mL, and a relatively clear separation was found between the non-BFR and BFR groups. Therefore, the initial autologous bone flap of over 60 mL could be a possible risk factor for BFR. Conclusion : From the present study, BFR in patients who underwent CP with autologous bone flap might be inevitable. However, the degree of BFR may differ from one to another. Therefore, considering artificial bone flaps as implants for patients with large DC could be reasonable. Still, the risk factors for BFR are not clearly understood. Therefore, chronological analysis and pathophysiologic studies are needed.

An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning (머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구)

  • Lee, Chang-Ho;Kim, Woong-Yi;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

Prediction of Energy Harvesting Efficiency of an Inverted Flag Using Machine Learning Algorithms (머신 러닝 알고리즘을 이용한 역방향 깃발의 에너지 하베스팅 효율 예측)

  • Lim, Sehwan;Park, Sung Goon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.31-38
    • /
    • 2021
  • The energy harvesting system using an inverted flag is analyzed by using an immersed boundary method to consider the fluid and solid interaction. The inverted flag flutters at a lower critical velocity than a conventional flag. A fluttering motion is classified into straight, symmetric, asymmetric, biased, and over flapping modes. The optimal energy harvesting efficiency is observed at the biased flapping mode. Using the three different machine learning algorithms, i.e., artificial neural network, random forest, support vector regression, the energy harvesting efficiency is predicted by taking bending rigidity, inclination angle, and flapping frequency as input variables. The R2 value of the artificial neural network and random forest algorithms is observed to be more than 0.9.

A novel liquefaction prediction framework for seismically-excited tunnel lining

  • Shafiei, Payam;Azadi, Mohammad;Razzaghi, Mehran Seyed
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.401-419
    • /
    • 2022
  • A novel hybrid extreme machine learning-multiverse optimizer (ELM-MVO) framework is proposed to predict the liquefaction phenomenon in seismically excited tunnel lining inside the sand lens. The MVO is applied to optimize the input weights and biases of the ELM algorithm to improve its efficiency. The tunnel located inside the liquefied sand lens is also evaluated under various near- and far-field earthquakes. The results demonstrate the superiority of the proposed method to predict the liquefaction event against the conventional extreme machine learning (ELM) and artificial neural network (ANN) algorithms. The outcomes also indicate that the possibility of liquefaction in sand lenses under far-field seismic excitations is much less than the near-field excitations, even with a small magnitude. Hence, tunnels designed in geographical areas where seismic excitations are more likely to be generated in the near area should be specially prepared. The sand lens around the tunnel also has larger settlements due to liquefaction.

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

Study on the Effective Compensation of Quantization Error for Machine Learning in an Embedded System (임베디드 시스템에서의 양자화 기계학습을 위한 효율적인 양자화 오차보상에 관한 연구)

  • Seok, Jinwuk
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.157-165
    • /
    • 2020
  • In this paper. we propose an effective compensation scheme to the quantization error arisen from quantized learning in a machine learning on an embedded system. In the machine learning based on a gradient descent or nonlinear signal processing, the quantization error generates early vanishing of a gradient and occurs the degradation of learning performance. To compensate such quantization error, we derive an orthogonal compensation vector with respect to a maximum component of the gradient vector. Moreover, instead of the conventional constant learning rate, we propose the adaptive learning rate algorithm without any inner loop to select the step size, based on a nonlinear optimization technique. The simulation results show that the optimization solver based on the proposed quantized method represents sufficient learning performance.