• Title/Summary/Keyword: Conventional X-ray

Search Result 693, Processing Time 0.033 seconds

Comparison of X-ray computed tomography and magnetic resonance imaging to detect pest-infested fruits: A pilot study

  • Kim, Taeyun;Lee, Jaegi;Sun, Gwang-Min;Park, Byung-Gun;Park, Hae-Jun;Choi, Deuk-Soo;Ye, Sung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.514-522
    • /
    • 2022
  • Non-destructive testing (NDT) technology is a widely used inspection method for agricultural products. Compared with the conventional inspection method, there is no extensive sample preparation for NDT technology, and the sample is not damaged. In particular, NDT technology is used to inspect the internal structure of agricultural products infested by pests. The introduction and spread of pests during the import and export process can cause significant damage to the agricultural environment. Until now, pest detection in agricultural products and quarantine processes have been challenging because they used external inspection methods. However, NDT technology is advantageous in these inspection situations. In this pilot study, we investigated the feasibility of X-ray computed tomography (X-ray CT) and magnetic resonance imaging (MRI) to identify pest infestation in agricultural products. Three kinds of artificially pest-infested fruits (mango, tangerine, and chestnut) were non-destructively inspected using X-ray CT and MRI. X-ray CT was able to identify all pest infestations in fruits, while MRI could not detect the pest-infested chestnut. In addition, X-ray CT was superior to the quarantine process than MRI based on the contrast-to-noise ratio (CNR), image acquisition time, and cost. Therefore, X-ray CT is more appropriate for the pest quarantine process of fruits than MRI.

Novel Structure of 21.6 inch a-Si:H TFT Array for the Direct X-ray Detector

  • Kim, Jong-Sung;Choo, Kyo-Seop;Park, June-Ho;Chung, In-Jae;Joo, In-Su
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.29-31
    • /
    • 2000
  • A 21.6" a-Si:H TFT array for direct conversion X-ray detector with 2480 by 3072 pixels is successfully developed. To obtain X-ray image of satisfactory quality, a novel structure with a storage electrode on BCB is proposed. The structure reduces the parasitic capacitance of data line, which is one of the main sources of signal noise. Also, the structure shows greater resistance to failure than that of the conventional design.

  • PDF

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF

Study for Inspection Method of Electronic Components Using 3-D X-ray Imaging Technology (3차원 X-ray 영상 기법을 이용한 전자부품 검사 기술 연구)

  • Sim, Hyeok-Hun;Park, Gi-Nam;Kim, Jong-Hyeong;Park, Hui-Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-161
    • /
    • 2007
  • There are technological changes to reduce the size and weight of electronic components and to accommodate multi-functions in them. To meet this trend, more complicated technological processes are required. To maintain the processes, more accurate inspection systems are also necessary. Therefore, new inspection methods are needed, which is differ from conventional inspection methods such as electrical test methods ICT(In-Circuit Test), FCT(Function Test) and visual test using optical equipments. One of the possible approaches is non-destructive test using X-ray. In this paper, an inspection method using X-ray is developed and applied to inspection of soldering state and internal defects of electronic components.

A Study on Pathological Pattern Detection using Neural Network on X-Ray Chest Image (신경회로망을 이용한 X-선 흉부 영상의 병변 검출에 관한 연구)

  • 이주원;이한욱;이종회;조원래;장두봉;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.371-378
    • /
    • 2000
  • In this study, we proposed pathological pattern detection system for X-ray chest image using artificial neural network. In a physical examination, radiologists have checked on the chest image projected the view box by a magnifying glass and found out what the disease is. Here, the detection of X-ray fluoroscopy is tedious and time-consuming for human doing. Lowering of efficiency for chest diagnosis is caused by lots mistakes of radiologist because of detecting the micro pathology from the film of small size. So, we proposed the method for disease detection using artificial neural network and digital image processing on a X-ray chest image. This method composes the function of image sampling, median filter, image equalizer used neural network and pattern recognition used neural network. We confirm this method has improved the problem of a conventional method.

  • PDF

Coherent x-ray scattering to study dynamics in thin films (결맞는 X-선 산란을 이용한 박막의 표면 거동 연구)

  • Kim, Hyun-Jung
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.143-146
    • /
    • 2005
  • A new method of x-ray photon correlation spectroscopy (XPCS) using coherent x-rays is developed recently for probing the dynamics of surface height fluctuations as a function of lateral length scale. This emerging technique applies the principles of dynamic light scattering in the x-ray regime. The short wavelength and slow time scales characteristic of XPCS extend the phase space accessible to scattering studies beyond some restrictions by light and neutron. In this paper, we demonstrate XPCS to study the dynamics of surface fluctuations in thin supported polymer films. We present experimental verification of the theoretical predictions for the wave vector and temperature dependence of the capillary wave relaxation times for the supported polymer films at melt for the film thicknesses thicker than 4 times of the radius of gyration of polymer. We observed a deviation from the conventional capillary wave predictions in thinner films. The analysis will be discussed in terms of surface tension, viscosity and effective interactions with the substrate.

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF

The ConvexHull using Outline Extration Algorithm in Gray Scale Image (이진 영상에서 ConvexHull을 이용한 윤곽선 추출 알고리즘)

  • Cho, Young-bok;Kim, U-ju;Woo, Sung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.162-165
    • /
    • 2017
  • The proposed paper extracts the region of interest from the x-lay input image and compares it with the reference image. The x-ray image has the same shape, but the size, direction and position of the object are photographed differently. In this way, we measure the erection difference of darkness and darkness using the similarity measurement method for the same object. Distance measurement also calculates the distance between two points with vector coordinates (x, y, z) of x-lay data. Experimental results show that the proposed method improves the accuracy of ROI extraction and the reference image matching time is more efficient than the conventional method.

  • PDF

Image Quality Enhancement for Chest X-ray images (흉부 엑스레이 영상을 위한 화질 개선 알고리즘)

  • Park, So Yeon;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.97-107
    • /
    • 2015
  • The initial X-ray images obtained from a digital X-ray machine have a wide data range and uneven brightness level than normal images. In particular, in Chest X-ray images, it is necessary to improve naturally all of the parts such as ribs, spine, tissue, etc. These X-ray images can not be improved enough from conventional image quality enhancement algorithms because their characteristics are different from ordinary images'. This paper proposes to eliminate unnecessary background from an input image and expand the histogram range of the image. Then, we adjust the weight per frequency band of the image for improvement of contrast and sharpness. Finally, jointly taking the advantages of global contrast enhancement and local contrast enhancement methods we obtain an improved X-ray image suitable for effective diagnosis in comparison with the existing methods. Experimental results show quantitatively that the proposed algorithm provides better X-ray images in terms of the discrete entropy and saturation than the previous works.

Compact Anode Design with the Heat Capacity Performance in Rotating Anode X-ray Tube for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2015
  • We studied the compact anode design to develop 100 kW rotating anode X-ray tube with large focal spot 1.2 mm, small focal spot 0.6 mm and tube voltage 150 kV for large hospital digital radiography using computer thermal simulation. The larger thermal radiation effect in a high vacuum can reduce the temperature of anode so the method to increase the surface area of anode is investigated. The anode has the multi-tier shape at the back side of TZM body of anode and also bigger diameter of anode. The number of multi-tiers was varied from 6 to 15 and the diameter of anode was also varied from ${\Phi}74$ to ${\Phi}82$. From ANSYS transient thermal simulation result, we could obtain $1056.4^{\circ}C$ anode maximum temperature when applying 100 kW input power at 0.1 second on target focal track which is less than $1091^{\circ}C$ of the conventional 75 kW X-ray tube with reduced anode weight by 15.5% than the conventional anode. The compact anode of reduced anode weight is able to improve the unwanted noise when the rotor is rotating at high-speed and also reduce the rotational torque which the cost effective stator-coil is possible. It is believed that the anode with 15 ea multi-tiers using ${\Phi}82$ can satisfy with the specification of the anode heat capacity. From the results of this paper, it has been confirmed that the proposed compact anode can be used as the anode of 100 kW rotating anode X-ray tube for digital radiography.