• Title/Summary/Keyword: Conventional TENS

Search Result 70, Processing Time 0.021 seconds

A Compression Technique for Interconnect Circuits Driven by a CMOS Gate (CMOS 게이트에 의해서 구동 되는 배선 회로 압축 기술)

  • Cho, Kyeong-Soon;Lee, Seon-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • This paper presents a new technique to reduce a large interconnect circuit with tens of thousands of elements into the one that is small enough to be analyzed by circuit simulators such as SPICE. This technique takes a fundamentally different approach form the conventional methods based on the interconnect circuit structure analysis and several rules based on the Elmore time constant. The time moments are computed form the circuit consisting of the interconnect circuit and the CMOS gate driver model computed by the AWE technique. Then, the equivalent RC circuit is synthesized from those moments. The characteristics of the driving CMOS gate can be reflected with the high degree of accuracy and the size of the compressed circuit is determined by the number of output nodes regardless of the size of the original interconnect circuits. This technique has been implemented in C language, applied to several interconnect circuits driven by a 0.5${\mu}m$ CMOS gate and the equivalent RC circuits with more than 99% reduction ratio and accuracy with 1 ~ 10% error in therms of propagation delays were obtained.

  • PDF

Adaptive User Selection in Downlink Multi-User MIMO Networks (다중 사용자 및 다중 안테나 하향링크 네트워크에서 적응적 사용자 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1597-1601
    • /
    • 2013
  • Multiple antenna technique is attracting attention as a core technology for next-generation mobile communication systems to accommodate explosively increasing mobile data traffic. Especially, recent researches focus on multi-user multiple input multiple output (MU-MIMO) system where base stations are equipped with several tens of transmit antennas and transmit data to multiple terminals (users) simultaneously. To enhance the performance of MU-MIMO systems, we, in this paper, propose an adaptive user selection algorithm which adaptively selects a user set according to varying channel states. According to Monte-Carlo based computer simulations, the performance of proposed scheme is significantly improved compared to the conventional scheme without user selection and approaches that of exhaustive search-based optimal scheme. On the other hand, the proposed scheme can reduce the computational complexity to $K/(2^K-1)$ compared to the optimal scheme where K denotes the number of total users.

Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition (표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작)

  • Park, Hyung Ju;Park, Jeong Won;Lee, Dae-Sik;Pyo, Hyeon-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.

Wide Tuning and Modulation Characteristics Analysis of Coupled-Ring Reflector Laser Diode (결합 링 반사기 레이저 다이오드의 광대역 파장 가변 및 변조 특성 해석)

  • Yoon, Pil-Hwan;Kim, Su-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.544-547
    • /
    • 2006
  • A time-domain modeling approach is used to study characteristics of a widely tunable coupled-ring reflector (CRR) laser diode(LD). The CRR consists of a bus waveguide and two coupled ring resonators coupled to the bus without resorting to distributed Bragg grating structure. The tuning range can be a few tens of nanometers with a side mode suppression ratio exceeding 35dB through the adjustment of currents into the phase control sections in the rings. The CRR laser diode has long effective cavity length compared to conventional laser diodes. Accordingly, a broad additional resonance peak in the amplitude modulation characteristics is observed between 20 to 30 GHz, implying the extension of amplitude modulation bandwidth.

Design and Frequency Characteristic Analysis of Shielded Isolation Transformer for the Power Line Noise Reduction (전원노이즈 억제용 차폐절연변압기의 설계 및 주파수특성 해석)

  • 이재복;허창수;이태호
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.55-63
    • /
    • 1999
  • It is necessary to eliminate the broad band noise whose frequency is in the range of several kHz to tens MHz generated from the AC power line to supply the power to electrical and electronic equipments. Because this kind of noise could damage or malfunction such equipments. To suppress those noises, some conventional devices such as a filter or surge suppressor have been used. However, they can not be isolated from the common-mode noise widely spreaded in all power line, which results in poor common-mode rejection performance. In this paper, we proposed a design method of shielded isolation transformer and a jumped circuit analysis model for shielded isolation transformer applicable to filtering common-mode noise as well as normal-mode noise. The analysis model has been verified as a suitable one for shielded isolation transformer through comparison of the simulation with experiment. In addition, it has been shown that the reduction performance for conducted noise of prototype 3 kVA shielded isolation transformer is superior to a unshielded isolation transformer.

  • PDF

Effects of Shape Anisotropy on Memory Characteristics of NiFe/Co/Cu/Co Spin Valve Memory Cells (NiFe/Co/Cu/Co 스핀밸브 자기저항 메모리 셀에서 형상자기이방성이 메모리 특성에 미치는 영향)

  • 김형준;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.301-305
    • /
    • 1999
  • NiFe(60$\AA$)/Co(5$\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valve thin films were patterned into magnetoresistive random access memory (MRAM) cells by a conventional optical lithography process and their output and switching properties were characterized with respect to the cell size and geometry. When 1 mA of constant sense current was applied to the cells, a few or a few tens of mV of output voltage was measured within about 30 Oe of external magnetic field, which is an adequate output property for the commercializing of competitive MRAM devices. In order to resolve the problem of increase in the switching thresholds of magnetic layers with the downsizing of MRAM cells, a new approach using the controlled shape anisotropy was suggested and interpreted by a simple calculation of anisotropy energies of magnetic layers consisting of the cells. This concept gave a reduced switching threshold in NiFe(60$\AA$)/Co(5$\AA$) layer consisting of the patterned cells from about 15 Oe to 5 Oe and it was thought that this concept would be much helpful for the realization of competitive MRAM devices.

  • PDF

TDM based MAC protocol for throughput enhancement in dense wireless LANs area (무선 랜 밀집 지역의 전송률 향상을 위한 시분할 매체 접근 제어 프로토콜)

  • Kwon, Hyeok-Jin;Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.534-541
    • /
    • 2018
  • The number of stations existing in the same wireless channel is increasing due to the spread of the wireless LAN devices. CSMA/CA, a conventional wireless LAN protocol, uses a random backoff method. In the random backoff scheme, collision between stations is frequent in a dense region where the number of stations existing in the same channel is several tens or more, and the performance of the performance degradation of such a protocol, the IEEE 802.11ah standard proposed a Restricted Access Window(RAW) wireless access method. RAW improves performance by limiting the number of concurrent access stations by dividing the stations into several groups. In this paper, we propose a method to improve the performance of channel connection by using new group creation, group removal and group relocation algorithm according to traffic change by improving existing RAW method.

Planarization technology of thick copper film structure for power supply (전력 소자용 후막 구리 구조물의 평탄화)

  • Joo, Suk-Bae;Jeong, Suk-Hoon;Lee, Hyun-Seop;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.523-524
    • /
    • 2007
  • This paper discusses the planarization process of thick copper film structure used for power supply device. Chemical mechanical polishing(CMP) has been used to remove a metal film and obtain a surface planarization which is essential for the semiconductor devices. For the thick metal removal, however, the long process time and other problems such as dishing, delamination and metal layer peeling are being issued, Compared to the traditional CMP process, Electro-chemical mechanical planarization(ECMP) is suggested to solve these problems. The two-step process composed of the ECMP and the conventional CMP is used for this experiment. The first step is the removal of several tens ${\mu}m$ of bulk copper on patterned wafer with ECMP process. The second step is the removal of residual copper layer aimed at a surface planarization. For more objective comparison, the traditional CMP was also performed. As an experimental result, total process time and process defects are extremely reduced by the two-step process.

  • PDF

Basic theory of Dielectric Relaxation Spectroscopy and Studies of Electrolyte Structure (유전체 이완 분광법의 원리 및 이를 이용한 전해액 미시구조 연구)

  • Koo, Bonhyeop;Hwang, Sunwook;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2019
  • To examine the solution structure of electrolytes, it is very important to understand ion-ion and ion-solvent interactions. In this review, we introduce the basic principle of dielectric relaxation spectroscopy (DRS) and studies of electrolyte structure. DRS is a type of impedance method, which measures the dielectric properties of electrolytes over a high frequency domain at levels of tens of GHz. Therefore, DRS provides information on the different polar chemical species present in the electrolyte, including the type and concentration of free solvents and ion pairs with dipole moments. The information of DRS is complementary to the information of conventional analytical techniques (Infrared/Raman spectroscopy, nuclear magnetic resonance (NMR), etc.) and thus enables a broad understanding of electrolyte structure.

Parallelization of Genome Sequence Data Pre-Processing on Big Data and HPC Framework (빅데이터 및 고성능컴퓨팅 프레임워크를 활용한 유전체 데이터 전처리 과정의 병렬화)

  • Byun, Eun-Kyu;Kwak, Jae-Hyuck;Mun, Jihyeob
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.10
    • /
    • pp.231-238
    • /
    • 2019
  • Analyzing next-generation genome sequencing data in a conventional way using single server may take several tens of hours depending on the data size. However, in order to cope with emergency situations where the results need to be known within a few hours, it is required to improve the performance of a single genome analysis. In this paper, we propose a parallelized method for pre-processing genome sequence data which can reduce the analysis time by utilizing the big data technology and the highperformance computing cluster which is connected to the high-speed network and shares the parallel file system. For the reliability of analytical data, we have chosen a strategy to parallelize the existing analytical tools and algorithms to the new environment. Parallelized processing, data distribution, and parallel merging techniques have been developed and performance improvements have been confirmed through experiments.