Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.2.53

Basic theory of Dielectric Relaxation Spectroscopy and Studies of Electrolyte Structure  

Koo, Bonhyeop (Energy Science and Engineering, DGIST)
Hwang, Sunwook (Energy Science and Engineering, DGIST)
Lee, Hochun (Energy Science and Engineering, DGIST)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.2, 2019 , pp. 53-59 More about this Journal
Abstract
To examine the solution structure of electrolytes, it is very important to understand ion-ion and ion-solvent interactions. In this review, we introduce the basic principle of dielectric relaxation spectroscopy (DRS) and studies of electrolyte structure. DRS is a type of impedance method, which measures the dielectric properties of electrolytes over a high frequency domain at levels of tens of GHz. Therefore, DRS provides information on the different polar chemical species present in the electrolyte, including the type and concentration of free solvents and ion pairs with dipole moments. The information of DRS is complementary to the information of conventional analytical techniques (Infrared/Raman spectroscopy, nuclear magnetic resonance (NMR), etc.) and thus enables a broad understanding of electrolyte structure.
Keywords
Electrolyte; Dielectric Relaxation Spectroscopy; Ion Pair;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Buchner, G. T. Hefter and P. M. May, 'Dielectric Relaxation of Aqueous NaCl Solutions', J. Phys. Chem. A, 103, 1-9 (1999).   DOI
2 F. H. Stillinger Jr and R. Lovett, 'Ion-Pair Theory of Concentrated Electrolytes. I. Basic Concepts', J. Chem. Phys., 48, 3858-3868 (1968).   DOI
3 C. Bættcher, "Theory of Electric Polarization. Vol. 1: Dielectric in Static Fields", Elsevier, New York (1973).
4 Von C. F. J. Bottcher and P. Bordewijk, "Theory of Electric Polarization. Vol. 11. Dielectrics in Time-Dependent Fields", Oxford, New York (1978).
5 A. Schonhals and F. Kremer, "Broadband Dielectric Spectroscopy", Springer, Berlin (2012).
6 R. Buchner and G. Hefter, 'Interactions and Dynamics in Electrolyte Solutions by Dielectric Spectroscopy', Phys. Chem. Chem. Phys., 11, 8984-8999 (2009).   DOI
7 E. Cavell, P. Knight and M. Sheikh, 'Dielectric Relaxation in Non Aqueous Solutions. Part 2.-Solutions of Tri (n-Butyl) Ammonium Picrate and Iodide in Polar Solvents', J. Chem. Soc. Faraday Trans., 67, 2225-2233 (1971).   DOI
8 J. O. M. Bockris, A. K. Reddy and M. Gamboa-Aldeco, "Modern Electrochemistry: An Introduction to an Interdisciplinary Area", Plenum Press, New York (1998).
9 J. M. Barthel, H. Krienke and W. Kunz, "Physical Chemistry of Electrolyte Solutions: Modern Aspects", Springer, New York (1998).
10 Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama and A. Yamada, 'Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries', J. Am. Chem. Soc., 136, 5039-5046 (2014).   DOI
11 K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko and M. Watanabe, 'Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme-Lithium Salt Equimolar Complexes', J. Am. Chem. Soc., 133, 13121-13129 (2011).   DOI
12 S. Hwang, D.-H. Kim, J. H. Shin, J. E. Jang, K. H. Ahn, C. Lee and H. Lee, 'Ionic Conduction and Solution Structure in LiPF6 and LiBF4 Propylene Carbonate Electrolytes', J. Phys. Chem. C, 122, 19438-19446 (2018).   DOI
13 T. Doi, Y. Shimizu, M. Hashinokuchi and M. Inaba, '$LiBF_4$-Based Concentrated Electrolyte Solutions for Suppression of Electrolyte Decomposition and Rapid Lithium-Ion Transfer at $LiNi_{0.5}Mn_{1.5}O_4$/Electrolyte Interface', J Electrochem. Soc., 163, A2211-A2215 (2016).   DOI
14 T. Doi, R. Masuhara, M. Hashinokuchi, Y. Shimizu and M. Inaba, 'Concentrated $LiPF_6/PC$ Electrolyte Solutions for 5-V $LiNi_{0.5}Mn_{1.5}O_4$ Positive Electrode in Lithium-Ion Batteries', Electrochim. Acta, 209, 219-224 (2016).   DOI
15 R. Buchner, G. Hefter, P. M. May and P. Sipos, 'Dielectric Relaxation of Dilute Aqueous NaOH, $NaAl(OH)_4$, and $NaB(OH)_4$', J. Phys. Chem. B, 103, 11186-11190 (1999).   DOI
16 J. Barthel, M. Kleebauer and R. Buchner, 'Dielectric Relaxation of Electrolyte Solutions in Acetonitrile', J. Solution Chem., 24, 1-17 (1995).   DOI
17 P. Eberspacher, E. Wismeth, R. Buchner and J. Barthel, 'Ion Association of Alkaline and Alkaline-Earth Metal Perchlorates in Acetonitrile', J. Mol. Liq., 129, 3-12 (2006).   DOI
18 A. Placzek, G. Hefter, H. M. Rahman and R. Buchner, 'Dielectric Relaxation Study of the Ion Solvation and Association of $NaCF_3SO_3$, $Mg(CF_3SO_3)_2$, and $Ba(ClO_4)_2$ in N, N-Dimethylformamide', J. Phys. Chem. B, 115, 2234-2242 (2011).   DOI
19 B. Wurm, M. Münsterer, J. Richardi, R. Buchner and J. Barthel, 'Ion Association and Solvation of Perchlorate Salts in N, N-Dimethylformamide and N, N-Dimethylacetamide: A Dielectric Relaxation Study', J. Mol. Liq., 119, 97-106 (2005).   DOI
20 N. Ottosson, J. Hunger and H. J. Bakker, 'Effect of Cations on the Hydrated Proton', J. Am. Chem. Soc., 136, 12808-12811 (2014).   DOI
21 N. Agmon, 'The Grotthuss Mechanism', Chem. Phys. Lett., 244, 456-462 (1995).   DOI
22 S. Cukierman, 'Et tu, Grotthuss! and Other Unfinished Stories', Biochim. Biophys. Acta, 1757, 876-885 (2006).   DOI
23 R. Buchner, T. Chen and G. Hefter, 'Complexity in "Simple" Electrolyte Solutions: Ion Pairing in $MgSO_4(aq)$', J. Phys. Chem. B, 108, 2365-2375 (2004).   DOI
24 A. Tromans, P. M. May, G. Hefter, T. Sato and R. Buchner, 'Ion Pairing and Solvent Relaxation Processes in Aqueous Solutions of Sodium Malonate and Sodium Succinate', J. Phys. Chem. B, 108, 13789-13795 (2004).   DOI