• Title/Summary/Keyword: Conventional Forces

Search Result 500, Processing Time 0.022 seconds

Development of Structural Analysis and Pre-post Program for Mega Frame System (초대형 골조시스템 전용 전후처리 및 해석프로그램의 개발)

  • Kim Hyun-Su;Lee Dong-Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.283-293
    • /
    • 2006
  • Recently, various types of structural systems for skyscrapers are studied as the height and size of the building structures rapidly increase due to social and economical needs. The mega frame system among them, which is the structural system developed recently, is known as a suitable structural system for skyscrapers because this structural system has sufficient stiffness against the lateral forces by combination of mega members which consist of many columns and girders. Since the mega frame structure has significant numbers of elements and nodes, it takes tremendous times and computer memories to analyze and design the structures. Therefore, the exclusive structural analysis program for mega frame system is developed to reduce the efforts and time required for the analysis and design of mega frame structure. To this end, an efficient modelling technique using the characteristics of mega frame structures and an efficient analytical model, which uses a few DOFs selected by the user using the matrix condensation method, are developed in this study. Static and dynamic analyses are conducted using an example structure. The effectiveness and accuracy of the developed program we verified by the comparison between the results of the proposed method and the conventional method.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Experimental and numerical studies of precast connection under progressive collapse scenario

  • Joshi, Digesh D.;Patel, Paresh V.;Rangwala, Husain M.;Patoliya, Bhautik G.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.235-248
    • /
    • 2020
  • Progressive collapse in a structure occurs when load bearing members are failed and the adjoining structural elements cannot resist the redistributed forces and fails subsequently, that leads to complete collapse of structure. Recently, construction using precast concrete technology is adopted increasingly because it offers many advantages like faster construction, less requirement of skilled labours at site, reduced formwork and scaffolding, massive production with reduced amount of construction waste, better quality and better surface finishing as compared to conventional reinforced concrete construction. Connections are the critical elements for any precast structure, because in past, major collapse of precast structure took place because of connection failure. In this study, behavior of four different precast wet connections with U shaped reinforcement bars provided at different locations is evaluated. Reduced 1/3rd scale precast beam column assemblies having two span beam and three columns with removed middle column are constructed and examined by performing experiments. The response of precast connections is compared with monolithic connection, under column removal scenario. The connection region of test specimens are filled by cast-in-place micro concrete with and without polypropylene fibers. Performance of specimen is evaluated on the basis of ultimate load carrying capacity, maximum deflection at the location of removed middle column, crack formation and failure propagation. Further, Finite element (FE) analysis is carried out for validation of experimental studies and understanding the performance of structural components. Monolithic and precast beam column assemblies are modeled using non-linear Finite Element (FE) analysis based software ABAQUS. Actual experimental conditions are simulated using appropriate boundary and loading conditions. Finite Element simulation results in terms of load versus deflection are compared with that of experimental study. The nonlinear FE analysis results shows good agreement with experimental results.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Development of Slope Stability Analysis Method Based on Discrete Element Method and Genetic Algorithm I. Estimation (개별요소법과 유전자 알고리즘에 근거한 사면안정해석기법의 개발 I. 검증)

  • Park Hyun-Il;Park Jun;Hwang Dae-Jin;Lee Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.115-122
    • /
    • 2005
  • In this paper, a new method composed of discrete element method and genetic algorithm has been introduced to estimate the safety factor and search critical slip surface on slope stability analysis. In case of estimating the safety factor, conventional methods of slope analysis based on the limit equilibrium do not satisfy the overall equilibrium condition; they must make assumptions regarding the inclination and location of the interstice forces. An alternative slope analysis method based on the discrete element method, which can consider the compatibility condition between force and displacement, is presented. Real-coded genetic algorithm is applied to the search for the minimum factor of safety in proposed analysis method. This search method is shown to be more robust than simple optimization routines, which are apt to find local minimum. Examples are also shown to demonstrate the applicability of the proposed method.

A Study on the appropriateness of Public Facilities Scale (기능전환에 따른 동사무소 공간의 적정규모에 관한 연구)

  • Lee Jeong-Ho
    • Journal of the Korean housing association
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2005
  • With the changing consciousness of community people and the rising standard of living, there has recently been an emphasis on the creation of public facilities' new functions and their role as local community facilities. This changing trends are accordingly requiring a change in spatial structure of the public facilities. In this study, an analysis was conducted with 24 public facilities situated in the Buk-gu district of Daegu to identify the adequacy of their space scale after functional variation. The results of this study are summarized as follows. 1) The site area of public facilities has been being widened after functional variation since more spaces are needed to provide an outdoor resting space with community people, expand a parking space, and operate a community center. 2) The factors that had a direct effect on the change in the use of space are the reduced space for administrative work and the expanded scope of the community center's function. Specifically, the areas of activities for civil service and administrative work and for reserve forces have been reduced due to reduction of function, and floor division by each function group has been becoming stricter due to addition of a community center's function. 3) It was shown that in terms of the space for functions of public facilities, spaces for civil service and waiting have increased mostly after function variation. After functional variation, the scale of spaces for civil service and administrative work has been being planned within the range of $200\~300 m^2$, regardless of the number of population to be covered by public facilities. 4) The space for public use is showing the greatest increase in public facilities which have been built after functional variation. The major factors seem to be the increased moving passages, the expanded convenient facilities for community people, and the increased convenient facilities for disabled. Facilities scale plans have been being made more systematically, compared to the conventional facilities.

Effect of passive self-ligating bracket placement on the posterior teeth on reduction of frictional force in sliding mechanics

  • Kim, Kyu-Ry;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.46 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the static (SFF) and kinetic frictional forces (KFF) in sliding mechanics of hybrid bracket systems that involve placing a conventional bracket (CB) or active self-ligating bracket (ASLB) on the maxillary anterior teeth (MXAT) and a passive SLB (PSLB) on the maxillary posterior teeth (MXPT). Methods: The samples consisted of two thoroughbred types (group 1, anterior-CB + posterior-CB; group 2, anterior-ASLB + posterior-ASLB) and four hybrid types (group 3, anterior-CB + posterior-PSLB-type 1; group 4, anterior-CB + posterior-PSLB-type 2; group 5, anterior-ASLB + posterior-PSLB-type 1; group 6, anterior-ASLB + posterior-PSLB-type 2) (n = 13 per group). After maxillary dentition alignment and maxillary first premolars removal in the stereolithographically-made typodont system, a $0.019{\times}0.025$-inch stainless steel wire was drawn through the right quadrant of the maxillary arch at 0.5 mm/min for 5 min. The SFF and KFF were measured with a mechanical testing machine and statistical analyses were performed. Results: Four different categories of SFF and KFF were observed among all groups (all p < 0.001). Group 1 demonstrated the highest SFF and KFF; groups 4 and 3 were second and third highest, respectively. The fourth category included groups 2, 5, and 6. Placing PSLBs on the MXPT resulted in significant SFF and KFF reductions in cases with CBs on the MXAT, but not in cases with ASLBs on the MXAT. Conclusions: These data might aid in the development of a hybrid bracket system that enables low-friction sliding of an archwire through the MXPT.

Feature Points Tracking of Digital Image By One-Directional Iterating Layer Snake Model (일방향 순차층위 스네이크 모델에 의한 디지털영상의 특징점 추적)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.86-92
    • /
    • 2007
  • A discrete dynamic model for tracking feature points in 2D images is developed. Conventional snake approaches deform a contour to lock onto features of interest within an image by finding a minimum of its energy functional, composed of internal and external forces. The neighborhood around center snaxel is a space matrix, typically rectangular. The structure of the model proposed in this paper is a set of connected vertices. Energy model is designed for its local minima to comprise the set of alternative solutions available to active process. Block on tracking is one dimension, line type. Initial starting points are defined to the satisfaction of indent states, which is then automatically modified by an energy minimizing process. The track is influenced by curvature constraints, ascent/descent or upper/lower points. The advantages and effectiveness of this layer approach may also be applied to feature points tracking of digital image whose pixels have one directional properties with high autocorrelation between adjacent data lines, vertically or horizontally. The test image is the ultrasonic carotid artery image of human body, and we have verified its effect on intima/adventitia starting points tracking.

Medical Application of the Nondestructive Ultrasonic Tests: Diagnosis of Micro Bone Fractures using Ultrasonic C Scan Images (비파괴 초음파 검사법의 의학적 활용: 초음파 C 스캔 영상을 이용한 미세 골절의 진단)

  • Choi, Min-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.377-385
    • /
    • 2002
  • Ultrasonic tests employing non-ionizing radiation are preferred in nondestructive examinations since they are safe and simple in use. The same principles of the techniques have been taken as valuable tools in medical area for the diagnoses of diseases, in other words, defects of the human body. The paper overviews the principles of the medical diagnosis based on nondestructive ultrasonic tests, and then evaluates experimentally the clinical potential of C scan images not popular in medicine, for detecting the micro fractures of the cortical bone. In the experiment the micro bone fractures were created on the femurs of porks by loading three point bending forces (2-4kN) with the speed of 1 mm/min. As the extent of the fracture was altered, not only X ray images but also ultrasonic C scan images using a focused ultrasonic probe resonated at 25 MHz were obtained. The results showed that ultrasonic C scan images were capable of detecting the micro bone fractures which were not possible to identify by conventional X ray images.

PDF-Distance Minimizing Blind Algorithm based on Delta Functions for Compensation for Complex-Channel Phase Distortions (복소 채널의 위상 왜곡 보상을 위한 델타함수 기반의 확률분포거리 최소화 블라인드 알고리듬)

  • Kim, Nam-Yong;Kang, Sung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5036-5041
    • /
    • 2010
  • This paper introduces the complex-version of an Euclidean distance minimization algorithm based on a set of delta functions. The algorithm is analyzed to be able to compensate inherently the channel phase distortion caused by inferior complex channels. Also this algorithm has a relatively small size of Gaussian kernel compared to the conventional method of using a randomly generated symbol set. This characteristic implies that the information potential between desired symbol and output is higher so that the algorithm forces output more strongly to gather close to the desired symbol. Based on 16 QAM system and phase distorted complex-channel models, mean squared error (MSE) performance and concentration performance of output symbol points are evaluated. Simulation results show that the algorithm compensates channel phase distortion effectively in constellation performance and about 5 dB enhancement in steady state MSE performance.