• Title/Summary/Keyword: Convective mode

Search Result 34, Processing Time 0.025 seconds

Natural Cooling Characteristics of a Heat Sink for LED Headlight used in Passenger Cars (승용 전조등 LED 램프의 방열판 자연 냉각특성)

  • Yoo, Jae-Young;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 2017
  • The objective of this study is to investigate the cooling characteristics of a heat sink for an LED headlight used in passenger cars. To this end, this study conducts the experimental and numerical analysis of the heat sink heated at constant heat fluxes without air flow applied. In the experiments, heat was transferred at a constant heat flux through the bottom of a heat sink. The measured temperature on pre-selected locations of the heat sink was in good agreement with the numerically predicted one. The experimental and numerical results indicate that the convective heat transfer coefficient for the natural convection mode was decreased by increasing the heat flux applied to the bottom of heat sink, lowering the cooling capabilities.

Tribological Analysis on the Contact Behaviors of Disk Brakes Due to Frictional Heatings -Cooling Effects By Vent Holes- (디스크 브레이크의 마찰열 접촉거동에 관한 트라이볼로지적 연구 - 벤트홀의 방열효과를 중심으로 -)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the thermal distortion of the ventilated disk brakes has been investigated based on the air cooling effects during 15 braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments

  • Kim, Geug-Tae;Kwon, Moo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.75-80
    • /
    • 2014
  • The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form $1g_0$ down to $1.0{\times}10^{-4}g_0$, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than $1g_0$, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of $1g_0$.

Sensitivity Analysis on the Thermal Response of Electronic Components during Infrared Reflow Soldering (적외선 리플로 솔더링시 전자부품의 열적반응 민감도 분석)

  • 손영석;신지영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The thermal response of electronic components during infrared reflow soldering is studied by a two-dimensional numerical model. The convective, radiative and conduction heat transfer within the reflow oven as well as within the card assembly are simulated. Parametric study is also performed to determine the thermal response of electronic components to various conditions such as conveyor velocities, exhaust velocities and emissivities. The results of this study can be used in selecting the oven operating conditions to ensure proper solder melting and minimization of thermally induced card assembly stresses.

Experimental Study on Combustion Instability in a Dump Combustor (덤프 연소기에서의 연소불안정에 대한 실험적 연구)

  • An, Gyu-Bok;Yun, Yeong-Bin;Yu, Kenneth
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2006
  • The combustion instability in a model dump combustor with an exhaust nozzle and the possibility of combustion control using a loudspeaker to these instabilities were studied. By changing inlet velocity, combustor length and equivalence ratio, dynamic pressure signals and flame structures were simultaneously taken. Because inlet velocity and combustor length affect the life time of vortex in the dump combustor, the results showed that as the combustor length increased and the inlet velocity decreased, the instability frequency decreased and the maximum power spectral density of the dynamic pressure generally decreased. Also, instability frequency and maximum power spectral density of the dynamic pressure increased with the increment of equivalence ratio. From the data of close-loop control, the optimum time-delay control using a loudspeaker was confirmed to be able to reduce the vortex shedding induced from the mixed acoustic-convective mode combustion instability.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Generic studies on thermo-solutal convection of mercurous chloride system of ${Hg_2}{Cl_2}$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • The effects of thermo-solutal convection on mercurous chloride system of ${Hg_2}{Cl_2}$, and Ne during physical vapor transport are numerically investigated for further understanding and insight into essence of transport phenomena, For $10\;K{\le}{\Delta}T{\le}30\;K$, the growth rate slowly increases and, then is decreased gradually until ${\Delta}T$=50 K, The occurrence of this critical point near at ${\Delta}T$=30 K is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. For the range of $10\;Torr{\le}P_B{\le}300\;Torr$, the rate is second order-exponentially decayed with partial pressures of component B, $P_B$. For the range of $5{\le}M_B{\le}200$, the rate is second order-exponentially decayed with a function of molecular weight of component B, $M_B$. Like the case of a partial pressure of component B, the effects of a molecular weight arc: reflected through the binary diffusivity coefficients, which are intimately related with suppressing the convection flow inside the growth enclosure, i,e., transition from convection to diffusion-dominant flow mode as the molecular weight of B increases. The convective mode is near at a ground level, i,e., on earth (1 $g_0$), and the convection is switched to the diffusion mode for $0.1\;g_0{\le}g{\le}10^{-2}g_0$, whereas the diffusion region ranges from $10^{-2}g_0$ up to $10^{-5}g_0$.

Estimation of Dynamic Properties of Steel Liquid Storage Tank by Shaking Table Test (진동대 실험에 의한 강재 액체저장탱크의 동특성 분석)

  • Choi, Hyoung Suk;Park, Dong Uk;Kim, Sung Wan;Kim, Jae Min;Baek, Eun Rim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.153-161
    • /
    • 2017
  • Liquid storage tank is one of the major infrastructures and generally used to store gases, drinking and utilizing water, dangerous fluids, fire water and so on. According to the recent reports and experiences, the tank structures are damaged in many earthquakes due to their low energy dissipating capacity. Therefore, many researchers have been tried to know the dynamic properties of the tanks including liquids. However, vary limited experimental studies are carried out using relatively small tank models. In this study, a series of shaking table tests are performed with maximum 2 m cubic rectangular liquid storage tanks made of steel to measure the natural frequency and estimate damping coefficient of impulsive and convective mode of the tanks. Especially, the damping values under different shapes and excitation methods are estimated by logarithmic decrement method and half power band-pass method and compared with current design code and standards such as ASCE 7, Eurocode 8 and NZS. Test results show that the impulsive mode damping is around 2% which is proposed by general standards and codes but the impulsive mode damping is 0.13% average that is slightly lower than the code recommendation.

Theory and technology of growing striation-free crystals

  • Scheel, Hans J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.174-186
    • /
    • 2004
  • Striations are growth-induced inhomogeneities which hamper the applications of solid-solution crystals and of doped crystals in numerous technologies. Thus the optimized performance of solid solutions often can not be exploited. The inhomogeneity problem can be solved in specific cases by achieving a distribution coefficient one in growth from melts and from solutions. Macrostep-induced striations can be suppressed by controlling the growth mode, by achieving growth on facets thereby preventing step bunching. Thermal striations are commonly assumed to be caused by convective instabilities so that reduced convection by microgravity or by damping magnetic fields was and is widely attempted to reduce such inhomogeneities. Here it will be shown that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth system do not cause striations. The theoretically derived conditions were experimentally established and allowed the growth of striation-free crystals of $KTa_{1-x}Nb_xO_3$"KTN" solid solutions. Hydrodynamic variations from the accelerated crucible rotation technique ACRT did not cause striations as long as the temperature was controlled within $0.03^{\circ}$ at $1200^{\circ}C$ growth temperature. Alternative approaches to solve or reduce the segregation and striation problems in growth from melts and from solutions are discussed as well.

Effects of convection on physical vapor transport of Hg2Cl2 in the presence of Kr - Part I: under microgravity environments

  • Lee, Yong Keun;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Special attention in the role of convection in vapor crystal growth has been paid since some single crystals under microgravity environments less than 1 $g_0$ exhibits a diffusive-convection mode and much uniformity in front of the crystal regions than a normal gravity acceleration of 1 $g_0$. The total molar fluxes show asymmetrical patterns in interfacial distribution, which indicates the occurrence of either one single or more than one convective cell. As the gravitational level decreases form 1 $g_0$ down to $1.0{\times}10^{-4}\;g_0$, the intensity of convection, indicative of the maximum molar fluxes, is reduced significantly for ${\Delta}T=30K$ and 90 K. The total molar fluxes decay first order exponentially with the partial pressure of component B, PB (Torr) for 20 Torr ${\leq}PB{\leq}$ 300 Torr, and two gravity accelerations of $g_y=1\;g_0$ and 0.1 $g_0$.