• Title/Summary/Keyword: Convective Heat Flux

Search Result 176, Processing Time 0.029 seconds

A Study on Calibration of Heat Flux Sensor by using Convective Heat Transfer (대류방식을 이용한 열유속센서의 검정에 관한 연구)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1358-1363
    • /
    • 2004
  • The objective of this work is to propose calibration facility in which a thin film type heat flux sensor can be calibrated under convective flow condition by using a small wind tunnel with the constant temperature plate condition. A small wind tunnel has been built to produce a boundary layer shear flow above a constant temperature copper plate. 12-independent copper blocks, thin film heaters, insulators and temperature controllers were used to keep the temperature of flat plate constant at a specified temperature. Three commercial thin film-type heat flux sensors were tested. Convective calibrations of these gages were performed over the available heat flux range of $1.4{\sim}2.5kW/m^2$. The uncertainty in the heat flux measurements in the convective-type heat flux calibration facility was ${\pm}2.07%$. Non-dimensional sensitivity is proposed to compare the sensitivity calibrated by manufacturer and that of experiment conducted in this study.

  • PDF

Numerical Estimation of Heat flux on the Deck Exposed to the High Temperature Impinging Jet of VTOL Vehicle (수직 이착륙기의 고온 고속 배기열에 의한 함정 갑판의 열유속 계산을 위한 수치모델)

  • Jang, Hosang;Hwang, Seyun;Choi, Wonjun;Lee, Jang Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.74-85
    • /
    • 2018
  • This study has analyzed the convective heat transfer on the deck exposed to the high-temperature impingement exhausting from a VTOL vehicle. The heat flow of the impingement on the deck is modeled by the convection heat transfer. The convective heat flux generated by the hot impinging jet is investigated by using both convective heat transfer formulation and conjugate heat transfer formulation. Computational fluid dynamics(CFD) code was used to compute the heat flux distribution. The RANS equation and the k-e turbulence model were used to analyze the thermal flow of the impinging jet. The heat flux distribution near the stagnation zone obtained by the conjugate heat transfer analysis shows more reasonable than the convective heat transfer analysis.

An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Convective Boiling

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.236-255
    • /
    • 1999
  • An improved mechanistic model was developed to predict a convective boiling critical heat flux (CHF) in the vertical round tubes with uniform heat fluxes. The CHF formula for subcooled and low quality boiling was derived from the local conservation equations of mass, energy and momentum, together with appropriate constitutive relations. The model is characterized by the momentum balance equation to determine the limiting transverse interchange of mass flux crossing the interface of wall bubbly layer and core by taking account of the convective shear effect due to the frictional drag on the wall-attached bubbles. Comparison between the present model predictions and experimental CHF data from several sources shows good agreement over a wide range of How conditions. The present model shows comparable prediction accuracy with the CHF look-up table of Groeneveld et al. Also the model correctly accounts for the effects of flow variables as well as geometry parameters.

  • PDF

Inverse Estimation of Convective Heat Transfer Coefficient, Emissivity and Flame Heat Flux on the Surface (표면의 대류열전달계수, 방사율 및 화염 열유속 역해석 연구)

  • Yoon, Kyung-Beom;Park, Won-Hee
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.15-20
    • /
    • 2013
  • The convective heat transfer coefficient, emissivity, and flame heat flux on the surface of Duglas fir are estimated by using repulsive particle swarm optimization. The surface temperature, mass loss rate, and ignition time are measured for various incident heat fluxes from a cone heater of the cone calorimeter. The calculated surface temperatures obtained by using the optimized convective heat transfer coefficient, emissivity and flame heat flux on the surface in this study match well with those obtained from the test. The maximum error between the predicted and measured surface temperatures for the three different external heat fluxes is within 2% showing reasonable agreements. The methodology proposed in this study can be used to obtain various values related to heat transfer on a flaming surface that are difficult to measure in experiments.

Forced convective boiling heat transfer for a ternary refrigerant mixture inside a horizontal tube (수평관내 3성분 혼합냉매의 강제대류비등 열전달)

  • 오종택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.912-920
    • /
    • 1999
  • The forced convective boiling heat transfer coefficients of R-407C were measured inside a horizontal tube 6.0mm I.D. and 4.0m long. The heat transfer coefficients increased according to an increase in heat flux at constant mass flux. Because nucleation was completely suppressed in the two-phase flow region with high quality, heat transfer coefficients in forced convective evaporation were higher than those in nucleate boiling region. Average heat transfer coefficients of R-407C were about 30 percent lower than the pure refrigerant correlation, due to mass transfer resistance at the gas-liquid interface. However, the total experimental data shows an agreement with the predicted data for ternary refrigerant mixtures with a mean deviation of 30%.

  • PDF

Flow Boiling Heat Transfer of R-22 in a Flat Extruded Aluminum Multi-Port Tube

  • Kim Nae-Hyun;Sim Yang-Sup;Min Chang-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.148-157
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^{2}s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C\;to\;15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations un-derpredict the low mass flux and overpredict the high mass flux data.

Experimental Investigation on Flow Boiling of R-22 in a Alumium Extruded Tube (알루미늄 다채널 압출관 내 R-22 대류 비등에 관한 실험 연구)

  • Sim, Yong-Sup;Min, Chang-Keun;Lee, Eung-Ryul;Sin, Tae-Ryong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1340-1345
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$ . The test range covered mass flux from 200 to 600 $kg/m^2s$, heat flux from 5 to 15 $kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$ . The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.

  • PDF

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

Forced Convective Boiling of Refrigerant-Oil Mixtures in a Bundle of Enhanced Tubes Having Pores and Connecting Gaps

  • Park, Ji-Hoon;Kim, Nae-Hyun;Kim, Do-Young;Byun, Ho-Won;Choi, Yong-Min;Kim, Soo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • The effect of oil on convective boiling of R-123 in an enhanced tube bundle is experimentally investigated at $26.7^{\circ}C$ saturation temperature. The enhanced tube had pores (0.23 mm diameter) and connecting gaps (0.07 mm width), which had been optimized using pure R-123. The effects of oil concentration (0 to 5%), heat flux (10 to $40\;kW/m^2$), mass velocity (8 to $26\;kg/m2^s$) and vapor quality are investigated. The oil significantly reduces the bundle boiling heat transfer coefficient. With 1% oil, the reduction is approximately 35%. Further addition of oil further reduces the heat transfer coefficient. The data are also compared with the pool boiling counterpart. The reduction in the heat transfer coefficient is smaller in a bundle (convective boiling) than in a pool (single-tube pool boiling), with larger difference at a smaller heat flux. Similar to pure R-123 case, the effects of mass velocity and vapor quality are negligible for the convective boiling of R-123/oil mixture.

Experimental Investigation on Forced Convective Heat Transfer Characteristic Generated to Heated Tube (가열된 튜브에서 발생하는 강제 대류열전달 특성에 관한 실험적 연구)

  • Park, Hee-Ho;Lee, Yang-Suk;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-98
    • /
    • 2006
  • The Heated Tube Facility(HIF) was fabricated to identify the forced convective heat transfer and the cooling characteristic for the hydrocarbon fuel(Jet A-1), which is used for the coolant of the regenerative cooling system. The forced convective heat transfer coefficient was calculated from the measured coolant and tube surface temperature. In case of using the Jet A-1, the maximum heat flux which the coolant can absorb was identified by determining the critical wall temperature generating the burnout on the fixed flow condition. The inlet bulk-temperature of the coolant has a direct influence on the forced convective heat transfer characteristic.