• Title/Summary/Keyword: Convection velocity

Search Result 410, Processing Time 0.024 seconds

Numerical Simulation of Vertical Wall Fires I. Turbulent Natural Convection Along Vertical Wall (수직벽화재의 수치 시뮬레이션 I. 수직벽 난류자연대류)

  • Park, Woe-Chul;Trouve, Arnaud
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • Numerical simulation of natural convection along a vertical wall was carried out to evaluate the computational fluid dynamics simulator, which is to be utilized for study of vertical wall fires. The computed velocity and temperature profiles were compared with measurements over the turbulent boundary layer formed along the wall of 4m high and constant temperature. It fumed out that the simulator with default parameters failed to predict the turbulent natural convection showing the boundary layer flow laminar. The grid size $\Delta$x=5mm, ${\Delta}y={\Delta}z=10mm$ and Smagorinsky constant of the large eddy simulation $C_s$=0.1 were chosen through parametric investigations. Though turbulent mixing was not enough, the velocity distribution near wall, peak velocity, and temperature profile in the turbulent boundary layer agreed well with the measurements.

Forced Convection Boiling Heat Transfer from a Horizontal Cylinder to Subcooled Water

  • Lee, Sung-Hong;Lee, Euk-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.79-90
    • /
    • 1999
  • This investigation presents the experimental results of forced convection boiling heat transfer around a circular, electrically heated horizontal cylinder to subcooled water in cross flow. In these experiments, the following primary variables were included: heat flux, flow velocity, pressure and degree of subcooling at inlet. Local surface temperatures were measured at nine peripheral positions. Local surface temperature distributions are classified into four categories depending on the supplied heat flux. The effects of the boiling curve depending on the fluid velocity, degree of subcooling at inlet and pressure are presented.

  • PDF

NATURAL CONVECTION OF WATER IN AN INCLINED CAVITY WITH HEAT GENERATION

  • Sundaravadivelu, K.;Kandaswamy, P.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.281-289
    • /
    • 2003
  • The convection of water is investigated in the vicinity of its density maximum temperature (277 K) in an inclined square cavity in the presence of heat sources. Numerical investigations are carried out by maintaining one of the vertical walls uniformly at 273 K and varying the other wall between temperatures 275 K and 285 K at different inclinations angles. The isotherms, streamlines and velocity profiles reveal the possible existence of multicellular fluid motions, and bidirectional velocity distributions. These fluid flow and heat transfer characteristics are significantly modified by the cavity inclination in the presence of heat sources.

The Monotone Streamline Upwind Finite Element Method Using Directionally Aligned Unstructured Grids (방향성을 갖는 비정렬 삼각형격자를 이용한 단조 유선 Upwind 유한요소해석)

  • CHEE Seon Koo;KWON Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.49-54
    • /
    • 1997
  • Rice's monotone streamline upwind finite element method, which was proposed to treat convection-dominated flows, is applied to the linear triangular element. An alignment technique of unstructured grids with given velocity fields is used to prevent the interpolation error produced in evaluating the convection term in the upwind method. The alignment of grids is accomplished by optimizing a target function defined with the inner-product of a properly chosen side vector in the element with the velocity field. Two pure advection problems are considered to demonstrate the superiorities of the present approach in solving the convection-dominated flow on the unstructured grid. Solutions obtained with aligned grids are much closer to the exact solutions than those with initial regular grids. The capability of the present approach in predicting the appearance of the secondary vortex in the laminar confined jet impingement is shown by comparing streamlines to those produced by SIMPLE on a highly stretched grid toward the impingement plate.

  • PDF

Effects of Surface Depression on Pool Convection and Oscillation in GTAW (GTA 용접에서 용융풀의 표면 변형이 유동과 진동에 미치는 영향)

  • 고성훈;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.70-77
    • /
    • 1999
  • Surface depression in the arc welding is calculated numerically to analyze its influence on pool convection and oscillation. The magnitude of surface depression due to arc pressure on the stationary GTA pool surface is relatively small, and fluctuations of the surface and velocity are caused mainly by arc pressure. The inward flow on the surface due to the electromagnetic force and positive surface tension gradient acts to decrease surface depression. Surface depression appears to have minor effects on average flow velocity and thus pool geometry. Pool oscillation occurs due to surface vibration, and oscillation frequencies are affected mainly by the surface tension and pool width. The input parameters such as arc pressure and current have negligible effects on the oscillation frequency, and the surface tension gradient has limited effects. Since the oscillation frequency varies slightly according to penetration, pool oscillation for the partial penetration weld pool is applicable to monitor the pool width.

  • PDF

The effect of forced convection on boiling heat transfer from a horizontal tube (수평 원관의 비등 열전달에서 강제대류의 영향)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.558-568
    • /
    • 1998
  • This paper presents the results of experiments involving external forced convection on boiling heat transfer from electrically heated horizontal tube to water in cross flow. In these experiments, all of the following primary variables were varied: heat flux, cross flow velocity, pressure and degree of subcooling. Local surface temperatures were measured at nine peripheral positions. Surface temperature distributions are classified into four groups as a function of heat flux. The characteristics of the boiling curve at different velocity, degree of subcooling and pressure are examined.

  • PDF

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation- (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석-)

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

Mixed Convection between Inclined Parallel Plates with different Temperatures (온도차를 갖는 경사진 평행평판 내의 혼합대류 열전달)

  • Piao, R.L.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2005
  • Experiments are performed to study the mixed convection flow and heat transfer in an inclined parallel plates with the upper part cooled and the lower part heated uniformly. The Reynolds number ranges from $4.0{\times}10^{-3}\;to\;6.2{\times}10^{-2}$, the angle of inclination, ${\theta}$, from 0 to 45 degree from the horizontal line, and Pr of the high viscosity fluid is 909. In this paper, the PIV(Particle image velocimetry) with TLC(Thermo-sensitive liquid crystal) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature field at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. This paper describes the methods, and presents the quantitative visualization of mixed convection. From this study, it is found that the flow pattern can be classified into three patterns which are affected by Reynolds number and the angle of inclination.

  • PDF