Numerical Simulation of Vertical Wall Fires I. Turbulent Natural Convection Along Vertical Wall

수직벽화재의 수치 시뮬레이션 I. 수직벽 난류자연대류

  • Published : 2008.09.30

Abstract

Numerical simulation of natural convection along a vertical wall was carried out to evaluate the computational fluid dynamics simulator, which is to be utilized for study of vertical wall fires. The computed velocity and temperature profiles were compared with measurements over the turbulent boundary layer formed along the wall of 4m high and constant temperature. It fumed out that the simulator with default parameters failed to predict the turbulent natural convection showing the boundary layer flow laminar. The grid size $\Delta$x=5mm, ${\Delta}y={\Delta}z=10mm$ and Smagorinsky constant of the large eddy simulation $C_s$=0.1 were chosen through parametric investigations. Though turbulent mixing was not enough, the velocity distribution near wall, peak velocity, and temperature profile in the turbulent boundary layer agreed well with the measurements.

수직벽 화재의 연구에 사용할 전산유체역학 시뮬레이터를 검증하기 위해 수직벽 자연대류의 수치 시뮬레이션을 수행하였다. 높이 4m의 등온 수직벽에 형성된 난류 경계층에서의 속도 및 온도 분포의 계산치를 측정치와 비교하였다. 시뮬레이터에 포함된 매개변수의 기본 값을 그대로 적용한 경우, 경계층 유동이 층류로 나타남에 따라 난류 자연대류를 예측하는데 실패하였다. 매개변수의 조사를 통해 격자크기 $\Delta$x=5mm, ${\Delta}y={\Delta}z=10mm$와 대와동모사(large eddy simulation)의 스마고린스키 상수(Smagorinsky constant) $C_s$=0.1을 선정하였다. 난류혼합이 미흡하였지만, 벽면근처에서의 속도분포와 최대속도, 그리고 난류 경계층 내 온도분포가 실험과 잘 일치하였다.

Keywords

References

  1. K. McGrattan, S. Hostikka, J. Floyd, H. Baum and R. Rehm, Fire Dynamics Simulator (Version 5) Technical Reference Guide, NIST, Gaithersburg, Maryland, U.S.A. (2007)
  2. J. Smagorinsky, 'General Circulation Expwriments with the Primitive Equations I. The Basic Experiment', Monthly Weather Review, Vol.91, p.99(1963) https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  3. D.G. Barhaghi, L. Davidson and R. Karlsson, 'Large-eddy Simulation of Natural Convection Boundary Layer on a Vertical Cylinder', Int'l J. Heat. Fluid Flow, Vol.27, pp.811-820(2006) https://doi.org/10.1016/j.ijheatfluidflow.2006.03.009
  4. H.Y. Wang, P. Joulain and J. Most, 'On the Numerical Modeling of Buoyancy-Dominated Turbulent Diffusion Flames by Using Large-eddy Simulation and k-e Turbulence Model', Combust. Sci. and Tech., Vol.176, pp.1007-1034 (2004) https://doi.org/10.1080/00102200490428602
  5. T. Tsuji and Y. Nagano, 'Characteristics of a Turbulent Natural Convection Boundary Layer along a Vertical Flat Plate', Int. J. Heat Mass Transfer, Vol.31, No.8, pp.1723-1734 (1988). Data sets are available at Data-Base on Turbulent Heat Transfer, http://tmdb.ws.tn.tudelft.nl/database/ https://doi.org/10.1016/0017-9310(88)90284-0