• Title/Summary/Keyword: Convection cells

Search Result 65, Processing Time 0.023 seconds

PERFORMANCE CHARACTERISTICS OF A PROTON EXCHANGE MEMBRANE FUEL CELL(PEMFC) WITH AN INTERDIGITATED FLOW CHANNEL

  • Lee, P.H.;Cho, S.A.;Han, S.S.;Hwang, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.761-769
    • /
    • 2007
  • The configuration of the flow channel on a bipolar plate of a proton exchange membrane fuel cell(PEMFC) for efficient reactant supply has great influence on the performance of the fuel cell. Recent demand for higher energy density fuel cells requires an increase in current density at mid voltage range and a decrease in concentration overvoltage at high current density. Therefore, an interdigitated flow channel where mass transfer rate by convection through a gas diffusion layer is greater than the mass transfer by a diffusion mechanism through a gas diffusion layer was recently proposed. This study attempts to analyze the i-V performance, mass transfer and pressure drop in interdigitated flow channels by developing a fully three dimensional simulation model for PEMFC that can deal with anode and cathode flow together. The results indicate that the trade off between performance and pressure loss should be considered for efficient design of flow channels. Although the performance of the fuel cell with interdigitated flow is better than that with conventional flow channels due to a strong mass transfer rate by convection across a gas diffusion layer, there is also an increase in friction due to the strong convection through the porous diffusion layer accompanied by a larger pressure drop along the flow channel. It was evident that the proper selection of the ratio of channel and rib width under counter flow conditions in the fuel cell with interdigitated flow are necessary to optimize the interdigitated flow field design.

Finite Element Analysis of Natural Convection of Fluids with Low Prandtl Number in a Square Enclosure (유한요소법을 이용한 정방형 밀폐용기내의 플란틀수가 낮은 유체의 자연대류에 관한 연구)

  • 김무현;이진호;강신형;손영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.541-550
    • /
    • 1988
  • Natural convection in a square enclosure was investigated numerically for low prandtl number fluids using Finite Element Method. In case of Ra=10$^{4}$, 10$^{5}$ and 10$^{6}$ the temperature gradient decreases gradually at the lower end of the hot wall(or at the upper end of the cold wall) as prandtl number decreases in the range of 0.01 .leq. Pr .leq. 10. Maximum heat transfer occurs at a somewhat higher point from the lower end of hot wall(or at somewhat lower point from the upper end of the cold wall) and it draws near to the lower end of the hot wall(or draws near to the upper end of the cold wall) with increasing prandtl number. The flow in the enclosure appears as an Unicell Pattern for Ra .leq. 10$^{4}$ and secondarily flows(or tertiary flows) appears in the core region for Ra .geq. 10$^{5}$ . The line joining the center of secondary cells skewes in a clockwise direction as the Prandtl number decreases.

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

Numerical Analysis on Melting and Solidification of Pure Metals with Enthalpy-Porosity Model

  • Kim, Sin;Chung, Bun-Jin;Kim, Min-Chan
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-105
    • /
    • 2002
  • A finite volume numerical approach is developed and used to simulate convection-dominated melting and solidification problems. The present approach is based on the enthalpy-porosity method that is traditionally used to track the motion of the liquid-solid front and to obtain the temperature and velocity profiles in the liquid-phase. The enthalpy-porosity model treats the solid-phase as the porosity in all computational cells that are located on the solid-liquid interfacial boundary. Concerning the computational cells that are fully located in the solid side of the interfacial boundary, the zero value of the porosity severely suppresses the velocity vector to practically a non-existent value that could be set equal to zero. A comparative analysis with the previous numerical approaches is performed to demonstrate the improved features of the presented model. Results of a melting and solidification experiments are also used to assess and evaluate the performance of the model.

Air Pumps for Polymer Electrolyte Membrane Fuel Cells (휴대용 고분자전해질막 연료전지의 산화제 공급을 위한 전기침투 현상 기반의 공기펌프의 개발)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.715-720
    • /
    • 2010
  • We propose an electroosmosis-based air delivery scheme for polymer electrolyte fuel cells and experimentally investigate its feasibility. An electroosmotic pump under a low-frequency AC electric field is used to displace initially a volume of pump working liquids. This working liquid is then pumped into a space enclosed by a flexible membrane and the movement of the membrane delivers air to a fuel cell. We successfully demonstrated the operation of a forced-convection fuel cell using this technique. In this preliminary study, however, the power consumption of the pump exceeds the power generated by the fuel cell. We conclude this paper with a discussion of several ways to reduce the pump-to-fuel cell power ratio.

Structure of Mesoscale Heavy Precipitation Systems Originated from the Changma Front (장마전선 상에서 발생한 중규모 호우계 구조에 대한 연구)

  • Park, Chang-Geun;Lee, Tae-Young
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.317-338
    • /
    • 2008
  • Analyses of observational data and numerical simulations were performed to understand the mechanism of MCSs (Mesoscale Convective Systems) occurred on 13-14 July 2004 over Jindo area of the Korean Peninsula. Observations indicated that synoptic environment was favorable for the occurrence of heavy rainfall. This heavy rainfall appeared to have been enhanced by convergence around the Changma front and synoptic scale lifting. From the analyses of storm environment using Haenam upper-air observation data, it was confirmed that strong convective instability was present around the Jindo area. Instability indices such as K-index, SSI-index showed favorable condition for strong convection. In addition, warm advection in the lower troposphere and cold advection in the middle troposphere were detected from wind profiler data. The size of storm, that produced heavy rainfall over Jindo area, was smaller than $50{\times}50km^2$ according to radar observation. The storm developed more than 10 km in height, but high reflectivity (rain rate 30 mm/hr) was limited under 6 km. It can be judged that convection cells, which form cloud clusters, occurred on the inflow area of the Changma front. In numerical simulation, high CAPE (Convective Available Potential Energy) was found in the southwest of the Korean Peninsula. However, heavy rainfall was restricted to the Jindo area with high CIN (Convective INhibition) and high CAPE. From the observations of vertical drop size distribution from MRR (Micro Rain Radar) and the analyses of numerically simulated hydrometeors such as graupel etc., it can be inferred that melted graupels enhanced collision and coalescence process of heavy precipitation systems.

Study of Electrolysis Ozone Generator Using Polymer Electrolyte (고분자 전해질을 이용한 전기분해식 오존 발생에 관한 연구)

  • Park, Jong-Eun;Lee, Ju-Bong;Lee, Hong-Ki;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.906-908
    • /
    • 1999
  • The application of ozone solid polymer electrolyte or Membrel water electrolysis cells with $PbO_2$ anodes for anodic generation of ozone in electrolyte-free water is reported. Maximum yields were obtained at a temperature of $25^{\circ}C-30^{\circ}C$ and current density of about 1A/$cm^2$. The current efficiency was not found to depend on ozone concentration in the feed water. exclusive transference of electric current by protons absence of convection in the electrolyte and high oxygen oversaturatation in the vicinity of electrode

  • PDF

Characteristics of Infrared and Water Vapor Imagery for the Heavy Rainfall Occurred in the Korean Peninsula (한반도에서 발생하였던 집중호우 시 적외 및 수증기 영상의 특성)

  • Seong, Min-Gyu;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.465-480
    • /
    • 2014
  • In this study, we analyzed the spatio-temporal variations of satellite imagery for the two heavy rainfall cases (21 September, 2010, 9 August, 2011) occurred in the Korean Peninsula. In general, the possibility of strong convection can be increased when the region with plenty of moisture at the lower layer overlapped with the boundary between dark and bright area in the water vapor imagery. And the merging of convective cells caused by the difference in the moving velocities of two cells resulted in the intensification of convective activity and rainfall intensity. The rainfall intensity is more closely linked with the minimum cloud top temperature than the mean cloud top temperature. Also the spatio-temporal variations of rainfall intensity are impacted by the existence of merging processes. The merging can be predicted by the animation of satellite imagery but earlier detection of convective cells is almost impossible by using the infrared and water vapor imagery.

Water Environments and Species Compositions of Phytoplankton at the Depths during Summer in the Coast of Dokdo, Korea (하계 독도연안의 수심별 수환경과 식물플랑크톤의 종조성 변화)

  • Kim, Mi-Kyung;Park, Jung-Won
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • The characteristics of physico-chemical factors and the species compositions of phytoplankton were investigated to analyze the marine ecosystem at the depths during summer in the coast of Dokdo (stations DOK1$\sim$3). The mean values of conductivity (32 mS cm$^{-1}$), total dissolved solids (45 mg L$^{-1}$), salinity (35.5 psu), total suspended solids (39 mg L$^{-1}$) were the highest in DOK1. The biomass (chl-${\alpha}$) of phytoplankton was the highest in the surface of station DOK1 (3.1 ${\mu}g$ L$^{-1}$). By means of physico-chemical factors (salinity, turbidity, chl-${\alpha}$, T-N, T-P and Si), the coast of Dokdo was estimated to be more polluted than the previous results in 2000. A total of 72 species in Dokdo were composed of 54 species (76.1%) for Bacillariophyceae and 13 species (18.3%) for Dinophyceae, 3 species (4.2%) for Chrysophyceae and 1 species (1.4%) for Cyanophyceae. The standing crops of phytoplankton were the highest (8.5 $\times$ 10$^4$ cells L$^{-1}$) at 20 m of station DOK1, while they were the lowest (1.65 $\times$ 10$^4$ cells L$^{-1}$) at 30 m of station 1. The dominance index was maximum (0.73) at 10 m of station DOK1 and was minimum (0.4) at 30 m of station 1. The diversity index was the highest (2.92) in the surface of station 2, while it was the lowest at 20 m (1.58). The dominant species of phytoplankton were Chaetoceros affinis (3.3 $\times$ 10$^4$ cells L$^{-1}$) at 20 m, Climacosphenia moniligera (2.8 $\times$ 10$^4$ cells L$^{-1}$) at 40 m and Melosira juergensii (1.7 $\times$ 10$^4$ cells L$^{-1}$) at 10 m of station DOK1. At the surface of station DOK2, the dominant species were Bacillaria paxillifer and Richelia intracellularis (1.4 $\times$ 10$^4$ cells L$^{-1}$, respectively), while it was Paralia sulcata (1.6 $\times$ 10$^4$ cells L$^{-1}$) at the surface of station DOK3. The station DOKl, where affected by upwelling, turbulence and convection due to the East Korean Warm Current, was the most eutrophicated water body in three stations. The monitoring of marine ecosystem in the coast of Dokdo should be continued to show the alternatives for water and species conservation and to purify the eutrophicated water body due to artificial pollutants as well as physico-chemical factors by the global warming, the climatic change, CO$_2$ etc.

Effects of Network Density on Gridded Horizontal Distribution of Meteorological Variables in the Seoul Metropolitan Area (관측망 밀도가 기상 자료의 격자형 수평 분포에 미치는 영향)

  • Kang, Minsoo;Park, Moon-Soo;Chae, Jung-Hoon;Min, Jae-Sik;Chung, Boo Yeon;Han, Seong Eui
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.183-196
    • /
    • 2019
  • High-quality and high-resolution meteorological information is essential to reduce damages due to disastrous weather phenomena such as flash flood, strong wind, and heat/cold waves. There are many meteorological observation stations operated by Korea Meteorological Administration (KMA) in Seoul Metropolitan Area (SMA). Nonetheless, they are still not enough to represent small-scale weather phenomena like convective storm cells due to its poor resolution, especially over urban areas with high-rise buildings and complex land use. In this study, feasibilities to use additional pre-existing networks (e.g., operated by local government and private company) are tested by investigating the effects of network density on the gridded horizontal distribution of two meteorological variables (temperature and precipitation). Two heat wave event days and two precipitation events are chosen, respectively. And the automatic weather station (AWS) networks operated by KMA, local-government, and SKTechX in Incheon area are used. It is found that as network density increases, correlation coefficients between the interpolated values with a horizontal resolution of 350 m and observed data also become large. The range of correlation coefficients with respect to the network density shows large in nighttime rather than in daytime for temperature. While, the range does not depend on the time of day, but on the precipitation type and horizontal distribution of convection cells. This study suggests that temperature and precipitation sensors should be added at points with large horizontal inhomogeneity of land use or topography to represent the horizontal features with a resolution higher than 350 m.