• Title/Summary/Keyword: Convection Heat Loss

Search Result 121, Processing Time 0.019 seconds

Numerical investigation of natural convection heat loss in solar receiver for dish concentrating system (접시형 태양열 집광시스템용 흡수기의 자연대류 열손실 수치해석 연구)

  • Kang, Myeong-Cheol;Kang, Yong-Heack;Kim, Jong-Kyu;Kim, Jin-Soo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.680-683
    • /
    • 2007
  • In dish concentrating system, natural convection heat loss occurs in cavity receiver. Heat loss mechanisms of conduction, convection, and radiation can reduce the system efficiency. To obtain the high efficiency, the receiver is to absorb the maximum of solar energy and transfer to the working fluid with maximum of heat losses. The convection heat loss is an important factor to determine the system performance. Numerical analysis of the convection heat loss of receiver was carried out for varing inclinaton angle from 0$^{\cdot}$ to 70$^{\cdot}$ with temperature range from 400$^{\cdot}C$ to 600$^{\cdot}C$ using the commercial software package, Fluent 6.0. The result of numerical analysis was comparable with convection heat loss model of solar receiver.

  • PDF

Pin Fin Optimization Based on the Ratio of Heat Loss to the Maximum Heat Loss (최대 열손실에 대한 열손실 비에 기준한 Pin 핀의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.817-823
    • /
    • 2008
  • A pin fin with variable fin base thickness is optimized based on the ratio of heat loss to the maximum heat loss using a two-dimensional analytic method. The temperature profile along the normalized radius position in the fin is presented. For fixed fin outer radius, the optimum heat loss, fin length and efficiency as a function of fin base thickness, outer radius, convection characteristic numbers ratio and ambient convection characteristic number are presented. One of the results shows that the effect of fin outer radius and ambient convection characteristic number on the optimum fin length is remarkable.

Forced Convection Heat Transfer from an Inner Surface of a Two-Dimensional Rectangular Cavity (이차원 사각형 공동 내부에서의 강제 대류 열전달)

  • Seo, T.B.;Han, K.Y.;Kange, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In order to investigate forced convection heat transfer due to the wind from the inner surface of a cavity receiver for a parabolic dish type solar energy collecting system, a two-dimensional rectangular cavity receiver is prepared and installed in a wind tunnel. The convection heat transfer coefficient of the inner surface of the receiver is dependent on the direction and the velocity of the wind. The attack angle of the cavity and the air velocity in the tunnel are controlled in a wide range so that the effects of the attack angle and the wind velocity on the heat transfer coefficient can be studied. The skirt is installed at the aperture of the cavity in order to reduce convective heat loss. The effects of the length and the installation angle of the skirt on convection heat transfer of the cavity are tested. It is found that convection heat loss can be significantly reduced by installing the skirt. Also, it is known that heat transfer from the cavity can be minimized if the angle of the skirt is $90^{\circ}$ to the outer surface of the cavity.

OPTIMZATION OF A PIN FIN BASED ON THE INCREASING RATE OF HEAT LOSS

  • Kang, Hyung-Suk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • A pin fin is optimized based on the increasing rate of heat loss by using a two-dimensional analytic method. The optimum heat loss, corresponding optimum thermal resistance and fin length are presented as a function of the fin base thickness, convection characteristic numbers ratio, fin outer radius and ambient convection characteristic number. One of the results shows that both the optimum heat loss and fin length decrease linearly whereas the optimum thermal resistance increases very slightly with increase of the fin base thickness.

  • PDF

Analysis of a Cylindrical Pin Fin with Variable Diameter (직경이 변하는 원통형 Pin 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.71-75
    • /
    • 2007
  • A cylindrical pin fin with variable diameter is analyzed by using the one dimensional analytical method. Heat loss and fin efficiency are presented as a function of the fin diameter, length and convection characteristic numbers ratio. The relationship between the fin diameter and convection characteristic number over the fin for the same amount of heat loss is shown. One of the results indicates the fin efficiency increases as the fin diameter increases while that decreases as the fin length increases.

  • PDF

Effect of Asymmetric Root Temperature on the Heat Loss From a Rectangular Fin Under Unequal Surrounding Heat Convection Coefficient (주위의 열대류계수가 다를때 사각핀으로부터의 열손실에 대한 비대칭적인 핀바닥온도의 영향)

  • 강형석;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1567-1571
    • /
    • 1994
  • Under the assumption that thermal conductivity of the fin is constant and the conditions ate steady state, effects of non-constant and thermally asymmetric root temperature and unequal surrounding convection coefficients of the fin on the heat loss from a fin of rectangular profile are investigated. The heat loss form a rectangular fin becomes maximum when the highest root temperature deviates from the fin center to the fin side which has a higher convection coefficient as surrounding convection coefficients of the fin increase and as the difference between the convection coefficient of fin top side and that of fin bottom side increases.

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.

Three-dimensional natural convection cooling of the electronic device with the effects of convective heat dissipation and vents (전자장비에서 벽면의 대류열방출 및 통기구의 효과를 고려한 3차원 자연대류 냉각)

  • ;;;Baek, Chang-In;Lim, Kwang-Ok
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3072-3083
    • /
    • 1995
  • The numerical simulation on the three-dimensional natural convection heat transfer in the enclosure with heat generating chip is performed, and the effects of convective heat loss and vents are also examined. The effects of the Rayleigh number and outer Nusselt number (Nu$_{0}$) on the maximum chip temperature and the fractions of heat loss from the hot surfaces are investigated. The results show that conduction through the substrate is dominant in heat dissipation. With the increase of Rayleigh number, heat dissipation through the chip surfaces increases and heat loss through the substrate decreases. Maximum dimensionless temperature with vents is found to decrease about 40% compared to the one without vents at Nu$_{0}$=0.l. It is also shown that effects of size and location of the vents are negligible.ble.

Analysis of a Geometrically Asymmetric Trapezoidal Fin with Variable Fin Base Thickness and Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.83-88
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin is analyzed using the one-dimensional analytic method. Heat loss and thermal resistance are represented as a function of the fin base thickness, base height, fm shape factor, inside fluid convection characteristic number, convection characteristic numbers ratio, fm length and ambient convection characteristic number. The relationship between the fin base height and the shape factor for equal amounts of heat loss is presented. One of the results shows that the variations of the fm base thickness and the inside fluid convection characteristic number give no effect on the thermal resistance.

Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume) (내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준))

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF