• 제목/요약/키워드: Convection Characteristic Number

검색결과 42건 처리시간 0.03초

사각 핀의 절연된 핀 끝과 비 절연 핀 끝의 비교 (Comparison of Insulated Fin Tip and Non-insulated Fin Tip for a Rectangular Fin)

  • 강형석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2414-2419
    • /
    • 2007
  • A rectangular fin with variable fin height, fin length and surrounding temperature is analyzed using a one-dimensional analytical method. Both the heat loss from a rectangular fin with non-insulated fin tip and that with insulated fin tip are presented as a function of the fin height, fin tip length and the convection characteristic number. The relative error in the heat loss of these two cases is also given as a function of the same variables. One of the results shows that the trend of heat loss for both cases with the variation of given variables is similar even though the relative error increases as the shape of the fin becomes shorter and fatter.

  • PDF

삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화 (Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin)

  • 강형석
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

Semi Lagrangian 방법과 Objective Time Integration을 이용한 점탄성 유동 해석 (Semi-Lagrangian flow analysis of Viscoelastic fluid using Objective Time Integration)

  • 강성용;김승모;이우일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.99-104
    • /
    • 2006
  • A semi-Lagrangian finite element scheme with objective time stepping algorithm for solving viscoelastic flow problem is presented. The convection terms in the momentum and constitutive equations are treated using a quasi-monotone semi-Lagrangian scheme, in which characteristic feet on a regular grid are traced backwards over a single time-step. Concerned with the generalized midpoint rule type of algorithms formulated to exactly preserve objectivity, we use the geometric transformation such as pull-back, push-forward operation. The method is applied to the 4:1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions.

  • PDF

사각 환형 핀에 대한 1차원과 2차원 해석의 열전달 비교 (Comparison of Heat Transfer Between 1-D and 2-D Analyses for a Rectangular Annular Fin)

  • 강형석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1177-1181
    • /
    • 2009
  • Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.

  • PDF

내벽에 유체가 있는 대류 사다리꼴 형상 Fin의 최적화 (Optimization of Convective Trapezoidal Profile Fin having Fluid inside the Wall)

  • 정병철;이성주;윤세창;강형석
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.95-102
    • /
    • 2006
  • This study analyzes and optimizes a design for a trapezoidal profile straight fin using one-dimensional analytical method. The heat transfer, fin length and fin height are optimized as a function of fin volume, fin shape factor and fin base length. In this optimization, convection characteristic number over fin surface and that of fluid inside fin wall are considered. One of the results shows that the maximum heat loss increases as fin volume increases and both fin shape factor and fin base length decrease.

핀 바닥 두께가 변화하는 역 사다리꼴 핀의 최적 설계 (Optimum Design of a Reversed Trapezoidal Fin with Variable Fin Base Thickness)

  • 강형석
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.455-461
    • /
    • 2008
  • A reversed trapezoidal fin with variable fin base thickness is optimized using a two-dimensional analytical method. For the fin base boundary condition, instead of a constant temperature, heat transfer from the inside fluid to the fin base is considered. Heat loss from the fin tip is not ignored. The maximum heat loss, corresponding optimum fin effectiveness, fin length and base height are presented as a function of the fin base thickness, shape factor and volume.

Pin fin의 다른 두 핀 끝 경계조건 사이의 온도분포 비교 (Comparison of Temperature Distribution Between Two Different Fin Tip Boundary Conditions for a Pin Fin)

  • 강형석
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.21-25
    • /
    • 2011
  • A comparison of temperature distributions along the fin length coordinate between two different fin tip boundary conditions for a circular pin fin is made by using the one-dimensional analytic method. One tip boundary condition is the actual fin tip boundary condition and fin tip temperature is arbitrarily given for another fin tip boundary condition. The value of the fin base temperature is depend on the fin base thickness and fin radius. One of the results shows that the temperature distribution along the fin length coordinate for the actual fin tip boundary condition and that for the arbitrarily given fin tip temperature are the same if the arbitrarily given fin tip temperature and the fin tip temperature for the actual fin tip boundary condition are the same.

  • PDF

진공관형 태양열 집열기를 이용한 건조장치의 열교환기 해석 (Analysis of heat exchanger in the drying system using solar collector with evacuated tubes)

  • 강형석;한영민;이귀현;이성주;윤세창
    • 신재생에너지
    • /
    • 제2권1호
    • /
    • pp.46-55
    • /
    • 2006
  • The performance enhancement of heat exchanger in the drying system using solar collector with evacuated tubes is analyzed. First, for this analysis, the heat loss from a reversed trapezoidal fin attached at the pipe is calculated as a function of convection characteristic number ratio, fin base length and fin tip length. Also, the optimum heat loss and fin tip length of the fin under certain conditions are presented. The overall surface effectiveness of the cylinder with reversed trapezoidal fins in the heat exchanger are shown as a function of half fin base height, fin lateral slope and fin tip length.

  • PDF

비대칭 사다리꼴 핀의 온도분포와 열손실 해석 (Analysis of Temperature Distribution and Heat Loss for an Asymmetric Trapezoidal Fin)

  • 강형석;송년주
    • 대한기계학회논문집B
    • /
    • 제36권4호
    • /
    • pp.377-383
    • /
    • 2012
  • 변화되는 위 측면 기울기를 가진 비대칭 사다리꼴 핀의 온도분포가 2차원 해석적 방법을 사용하여 조사되어 진다. 이 비대칭 핀을 위해, 내부유체로부터 내벽까지의 대류, 내벽으로부터 핀 바닥까지의 전도, 그리고 핀 바닥을 통한 전도가 동시에 고려된다. 무차원 핀 길이와 높이좌표 변화에 따른 온도 형상이 보여진다. 또한 핀 아래 끝에서 온도 변화가 핀 형상계수의 함수로 나타내어진다. 핀 길이의 변화에 따라 핀 바닥을 통한 열손실과 각 면으로부터의 열손실들이 비교된다. 결과들 중 하나는 핀형상계수가 증가함에 따라 핀 아래 끝에서 온도는 선형적으로 감소함을 보여준다.

창호를 통한 열전달 현상에 관한 연구 (A Study on the Heat Transfer Phenomenon through the Glazing System)

  • 강은율;오명원;김병선
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.32-37
    • /
    • 2009
  • An energy loss through the window system occupies about 10 to 30 percent on energy consumption of the whole building. That is the reason, several elements for a building composition of window system are the weakest from the heat. Insulation performance increases for the reducing heat loss. Heat transfer through the window system that is reducing heat transfer through conduction, convection and radiation. Insulation performance reinforcement methods classify improving heat specific quality of window system and improving efficiency of whole window system. The most application method among each methods is reducing emission ratio of the window system(Low-E glass), increasing a number of glazing(multiple window) and a method of vacuuming between glazing and glazing. Therefore this study is investigated a sort of glazing and specific character, U-value calculation with changing glazing thickness and calculation of temperature distribution and U-value with a glazing charging gas kind from double glazing. For a conclusion, an aspect of U-value figure at the smallest value case of vacuum glazing with Low-E coating. That means insulation efficiency is the best advantage during a building plan selecting vacuum glazing with Low-E coating for a energy saving aspect. In this way, U-value become different the number of glazing, coating whether or not and selecting injection gas. Therefore selecting of glazing is very important after due consideration by a characteristic and use of building and consideration of strong point and weak point.

  • PDF