• Title/Summary/Keyword: Convection Characteristic Number

Search Result 42, Processing Time 0.023 seconds

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.

Optimum Design of a Geometrically Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 기하학적 비대칭 사다리꼴 핀의 최적 설계)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-87
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin with variable fin base thickness and height is optimized based on the fixed fin base height using a one-dimensional analytic method. The temperature profile along the normalized X position in the fin is presented. For the fixed fin base height, the optimum heat loss, fin length and efficiency as a function of inside fluid convection characteristic number, fin base thickness and height, fin shape factor, convection characteristic numbers ratio and ambient convection characteristic number are represented. One of the results shows that the effect of fin base height and ambient convection characteristic number on the optimum values is remarkable.

Analysis of a Geometrically Asymmetric Trapezoidal Fin with Variable Fin Base Thickness and Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.83-88
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin is analyzed using the one-dimensional analytic method. Heat loss and thermal resistance are represented as a function of the fin base thickness, base height, fm shape factor, inside fluid convection characteristic number, convection characteristic numbers ratio, fm length and ambient convection characteristic number. The relationship between the fin base height and the shape factor for equal amounts of heat loss is presented. One of the results shows that the variations of the fm base thickness and the inside fluid convection characteristic number give no effect on the thermal resistance.

Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume) (내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준))

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

Pin Fin Optimization Based on the Ratio of Heat Loss to the Maximum Heat Loss (최대 열손실에 대한 열손실 비에 기준한 Pin 핀의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.817-823
    • /
    • 2008
  • A pin fin with variable fin base thickness is optimized based on the ratio of heat loss to the maximum heat loss using a two-dimensional analytic method. The temperature profile along the normalized radius position in the fin is presented. For fixed fin outer radius, the optimum heat loss, fin length and efficiency as a function of fin base thickness, outer radius, convection characteristic numbers ratio and ambient convection characteristic number are presented. One of the results shows that the effect of fin outer radius and ambient convection characteristic number on the optimum fin length is remarkable.

Analysis of a Cylindrical Pin Fin with Variable Diameter (직경이 변하는 원통형 Pin 핀의 해석)

  • Kang, Hyung-Suk;Kim, Jong-Ug
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.71-75
    • /
    • 2007
  • A cylindrical pin fin with variable diameter is analyzed by using the one dimensional analytical method. Heat loss and fin efficiency are presented as a function of the fin diameter, length and convection characteristic numbers ratio. The relationship between the fin diameter and convection characteristic number over the fin for the same amount of heat loss is shown. One of the results indicates the fin efficiency increases as the fin diameter increases while that decreases as the fin length increases.

  • PDF

Optimization of an Annular Fin with a Pipe of Variable Inner Radius for Fixed Fin Volume (고정된 휜 체적에 기준한 원관 내부반경이 변하는 환형 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Optimum values of fin performance and dimensions for an annular fin with a rectangular profile and a pipe with variable inner radius are determined by using a variable separation method. The range of ambient convection characteristic number that results in optimum heat loss is listed. The optimum heat loss, corresponding optimum fin effectiveness, fin length, and fin height are presented as a function of the inner radius of the pipe, inner fluid convection characteristic number, fin volume, and ambient convection characteristic number. One of the results shows that the optimum heat loss, fin effectiveness and fin length increase linearly with the inner radius of the pipe when both the fin volume and fin-base radius are fixed.

Comparison of Performance Between a Circular Pin Fin and a Half Circular Pin Fin (원형 pin fin과 반원형 pin fin 사이의 성능 비교)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.17-22
    • /
    • 2016
  • A circular pin fin (CPF) and a half circular pin fin (HCPF) are by using the one-dimensional analytic method. For these two fins, 90% of the maximum heat loss, Corresponding fin length for 90% of the maximum heat loss, fin effectiveness and fin efficiency are compared as functions of convection characteristic number and fin radius. Also, the ratio of heat loss from the HCPF to that from CPF listed with variation of fin length when the fin volumes are the same. One of the results shows that the efficiency of a CPF is larger than that of a HCPF while the effectiveness of a CPF is smaller than that of a HCPF when convection characteristic number, fin length and fin radius are the same.

  • PDF

Optimization of an Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 비대칭 사다리꼴 핀의 최적화)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • Optimization of the asymmetric trapezoidal fin with various upper lateral surface slope is made using a two-dimensional analytic method. For the fixed fin base height, the optimum heat loss, fin length and effectiveness are represented as inner fluid convection characteristic number, fin base thickness, fin base height, fin shape factor and ambient convection characteristic number. For this optimum procedure, the optimum heat loss is defined as 95% of the maximum heat loss from the fin. One of the results shows that optimum heat loss and effectiveness seems independent of the fin shape factor while optimum fin length decreases almost linearly as the fin shape factor increases.

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.