• Title/Summary/Keyword: Controlled blasting

Search Result 54, Processing Time 0.026 seconds

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

A Case Study on Explosives Demolition of the Dongdaemoon Complex Stadium(Baseball field) in Republic of Korea (동대문 운동장(야구장) 발파해체 시험시공 사례)

  • Min, Hyung-Dong;Park, Jong-Ho;Song, Young-Suk;Seo, Young-Su;Kim, Rea-Hoe;Jung, Byeong-Ho
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.23-37
    • /
    • 2008
  • The Dongdaemoon complex stadium is scheduled to remodelled into an international park, which will be named Design Plaza. The Dongdaemoon baseball field was constructed with Rahmen Structure which comprised beams, slabs and columns. In order to assure for viewing, the stadium was composed unusual structure that the height of the front column and the back column was designed differently. The bleachers was an upper arch form for viewing. The slab was not flat unliked the general infrastructure and tilted in stairway type for viewing. If we had applied the mechanical demolition method, we could have predicted several problems. Firstly, the stand could be unstable when the heavy equipment was to crush the reinforced concrete on the slab. Because the slab was not flat. Secondly, the construction expense and construction duration could be increase when the large equipment was to crush the reinforced concrete on the ground. Because the height of the stand was too high to crush on the ground so it needed to build a filling. Thus, we applied both the mechanical demolition method and explosives demolition method at the design stage. The result of explosives demolition was of complete success in terms of structural movement and controlled blasting noise and vibration. This case study provided a good example for a successful application of explosives demolition in urban areas.

Decoupling Effect on the Level of Blasting Vibration (발파진동의 크기에 마치는 디커플링효과의 연구)

  • Kim, Wang-Soo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.269-278
    • /
    • 2000
  • The pressure-time profile of the explosion gases can controlled for the use of cartridge explosive with two techniques known as Decoupling and spacing of the charges. Decoupling consists of a space between the explosive column and wall of the blast hole. Four different decoupling index 1.4, 1.8, 2.34, 3.0 are selected in this field study. The level of ground vibrations with each decoupling index was measured and the empirical particle velocity equation from these data was obtained. The condition of new cracks at blast hole are also examined. As the decoupling index is increased, the level of the blast vibration is decreased. But the cracks in rock masses are efficiently formed to remove the broken rock. The vibration constant associated with test sites is given as $K=1564.5(D.L)^{-1.3233}$ in terms of D.I.(decoupling index).

  • PDF

Optimization of Glass Wafer Dicing Process using Sand Blast (Sand Blast를 이용한 Glass Wafer 절단 가공 최적화)

  • Seo, Won;Koo, Young-Mo;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • A Sand blasting technology has been used to address via and trench processing of glass wafer of optic semiconductor packaging. Manufactured sand blast that is controlled by blast nozzle and servomotor so that 8" wafer processing may be available. 10mm sq test device manufactured by Dry Film Resist (DFR) pattern process on 8" glass wafer of $500{\mu}m's$ thickness. Based on particle pressure and the wafer transfer speed, etch rate, mask erosion, and vertical trench slope have been analyzed. Perfect 500 um tooling has been performed at 0.3 MPa pressure and 100 rpm wafer speed. It is particle pressure that influence in processing depth and the transfer speed did not influence.

Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions (노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구)

  • Park, Seung-Hwan;Cho, Sang-Ho;Kim, Seung-Kon;Kim, Kwang-Yeom;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • Crack-controlled blasting method which utilizes notched charge hole has been proposed in order to achieve smooth fracture plane and minimize the excavation damage zone. In this study, the blast models, which have a notched charge hole, were analyzed using dynamic fracture process analysis software to investigate the effect of the geometry of a notched charge hole and decoupling indexes of the charge hole on crack growth control in blasting. As a result, crack extension increased and damage crack decreased with the notch length. Ultimately, stress increment factors and resultant fracture patterns with different notch length and width were analyzed in order to examine the effect factors on the crack growth controlling in rock blasts using a notched charge hole.

Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability

  • Aksoy, Cemalettin O.;Uyar, Guzin G.;Ozcelik, Yilmaz
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.809-828
    • /
    • 2016
  • In deep open pit mines, slope stability is very important. Particularly, increasing the depths increase the risks in mines having weak rock mass. Blasting operations in this type of open pits may have a negative impact on slope stability. Several or combination of methods can be used in order to enable better analysis in this type of deep open-pit mines. Numerical modeling is one of these options. Many complex problems can be integrated into numerical methods at the same time and analysis, solutions can be performed on a single model. Rock failure criterions and rock models are used in numerical modeling. Hoek-Brown and Mohr-Coulomb terms are the two most commonly used rock failure conditions. In this study, mine planning and discontinuity conditions of a lignite mine facing two big landslides previously, has been investigated. Moreover, the presence of some damage before starting the study was identified in surrounding structures. The primary research of this study is on slope study. In slope stability analysis, numerical modeling methods with Hoek-Brown and Mohr-Coulomb failure criterions were used separately. Preparing the input data to the numerical model, the outcomes of patented-blast vibration minimization method, developed by co-author was used. The analysis showed that, the model prepared by applying Hoek-Brown failure criterion, failed in the stage of 10. However, the model prepared by using Mohr-Coulomb failure criterion did not fail even in the stage 17. Examining the full research field, there has been ongoing production in this mine without any failure and damage to surface structures.

Numerical study on the charateristics of fracture growth in fracture controlled blasting using notched blasthole (노치성형 발파공을 이용한 균열제어 발파방법의 균열발생 특성에 대한 수치해석적 고찰)

  • 백승규;김재동;임한욱;류창하
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • A numerical analysis was performed to investigate the effects of notched blasthole in controlling the fracture plane. Analyzed were elastic and elasto-plastic response of rock, and fracture propagation under static and dynamic load conditions. Results showed that the region exceeding the tensile strength extended up to three times the radius of a normal blasthole in elastic analysis, while fifteen times in elasto-plastic analysis. It was shown that a crack was driven from the notch tip up to the distance of 23 times the hole radius in the case of a notched blasthole with a notch of 5 mm in depth and 30 mm in length.

  • PDF

Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine

  • Chen, Lu;Zhou, Zilong;Zang, Chuanwei;Zeng, Ling;Zhao, Yuan
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.449-457
    • /
    • 2019
  • Physical model tests were first performed to investigate the failure pattern of multiple pillar-roof support system. It was observed in the physical model tests, pillars were design with the same mechanical parameters in model #1, cracking occurred simultaneously in panel pillars and the roof above barrier pillars. When pillars 2 to 5 lost bearing capacity, collapse of the roof supported by those pillars occurred. Physical model #2 was design with a relatively weaker pillar (pillar 3) among six pillars. It was found that the whole pillar-roof system was divided into two independent systems by a roof crack, and two pillars collapse and roof subsidence events occurred during the loading process, the first failure event was induced by the pillars failure, and the second was caused by the roof crack. Then, for a multiple pillar-roof support system, three types of failure patterns were analysed based on the condition of pillar and roof. It can be concluded that any failure of a bearing component would cause a subsidence event. However, the barrier pillar could bear the transferred load during the stress redistribution process, mitigating the propagation of collapse or cutting the roof to insulate the collapse area. Importantly, some effective methods were suggested to decrease the risk of catastrophic collapse, and the deep-hole-blasting was employed to improve the stability of the pillar and roof support system in a room and pillar mine.

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Blast Design for Controlled Augmentation of Muck Pile Throw and Drop (발파석의 비산과 낙하를 조절하기 위한 발파 설계)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.360-368
    • /
    • 2010
  • The paper presents a case study from a surface mine where the controlled augmentation of throw and drop of the blasted muck piles was warranted to spread the muck piles on the lower berm of the bench. While the augmentation of throw increased the lateral spread and the looseness of the broken muck, the augmentation of drop significantly lowered the muck pile height for easy excavation by the excavators. In this light, the present paper highlights and discusses some pertinent changes in the blast design parameters for such specialized application of cast blasting in a surface mine, where a sandstone bench, with average height of 22-24 m was to be made amenable for excavation by 10 m3 rope shovels, which possessed maximum digging capability of up to 14 m. The results of tailoring the blast design parameters for augmentation of throw and drop are compared with the baseline blasts which were earlier practiced on the same bench by dividing the full height of the bench in 2-slices; upper slice (10-14 m high) and lower slice (12-15 m high). Results of fragment size, its distribution and total cycle time of excavator (shovel) are presented, and discussed.