• 제목/요약/키워드: Control velocity

검색결과 3,470건 처리시간 0.035초

스핀코터 회전속도에 따른 탄탈륨 박막두께의 선형모델에 관한 연구 (The Research via Linear of Tantalum Thin Film Thickness Depending on Revolution Velocity of Spin Coater)

  • 김승욱
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.17-22
    • /
    • 2020
  • Recently, the decrease in thin film thickness has been actively studied by changing several physical elements such as the increase in revolution velocity of lower substrate equipped with AC or DC motor. In this paper, we propose a novel spin coater control system that changes AC or DC motor and common use software with limitation of velocity and position control into step motor and LABVIEW software based on GUI to control revolution velocity and position more precisely. By determining six input values of rotation velocity 1, 5, 10, 25, 50, 100 PPS, we fabricated six samples using coating target, TA(tantalum) on silicon substrate and measured their thin film thickness by SEM. Hence, this research can be applied to inferring thin film thickness of tantalum regarding any value of revolution velocity without additional experiments and for linear reference model via property analysis of thin film thickness using other thin-film materials.

비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술 (The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part)

  • 이영선;이정환
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

대부하 대용량 유압 서보 시스템의 속도제어 (Velocity Control of Hydraulic Servo System with Heavy Load and Large Capacitya)

  • 이교일;이경수;이대옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.669-672
    • /
    • 1986
  • The velocity control of hydraulic servo system with heavy load and large capacity was investigated through the linear analysis and digital computer simulation. Each part of the nonlinear hydraulic servo system was mathmatically modelled. The result of linear analysis and computer simulation showed that the use of derivative of load pressure as a feedback signal is effective in velocity control.

  • PDF

Effects of Isokinetic Eccentric Training on Lower Extremity Muscle Activation and Walking Velocity in Stroke Patients

  • Park, Seung-Kyu;Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • 제27권4호
    • /
    • pp.190-195
    • /
    • 2015
  • Purpose: The aim of this study was to determine the effects of isokinetic eccentric training (IET) on lower extremity muscle activation and walking velocity according to slow velocity and fast velocity of isokinetic eccentric training in stroke patients. Methods: Thirty subjects were randomly divided into three groups: experimental group I (n=10), group II (n=10), and control group III (n=10). Each group was provided intervention under three conditions, as follows: isokinetic eccentric training + slow velocity (group I), isokinetic eccentric training + fast velocity (group II), and sit to stand training (group III). The training program was conducted for eight weeks (five times per week; 30 minutes per day). Subjects were measured on lower extremity muscle (vastus lateralis, vastus medialis, gastrocnemius) activation and walking velocity. Analysis of covariance (ANCOVA) were performed for comparison of lower extremity muscle activation and walking velocity between different intervention methods. Results: Significant difference in lower extremity muscle activation and walking velocity was observed in experimental group I and group II compared with the control group III (p<0.01). Results of post-hoc analysis showed a significant in lower extremity muscle activation and walking velocity in group I compared with group II and group III. Conclusion: Findings of this study suggest that slow velocity and fast velocity using isokinetic eccentric training may have a beneficial effect on improvement of lower extremity muscle activation and walking velocity in stroke patients.

수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구 (6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific)

  • 김효곤;정원지;김기정;김규탁;서영교;이기상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발 (Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control)

  • 윤원영;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF

쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기 (A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization)

  • 조영완
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

풍력발전시스템 속도제어의 실험적 고찰 (Investigation of a Speed Control for a Wind Turbin Systsem)

  • 임종환;최민호;허종철;김건훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.36-36
    • /
    • 2000
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is non-linear function of a wind speed, angular velocity, and pitch angle of the blade. The design of a cor_troller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the angular velocity of the blade is constant. For speed control, however, the angular velocity is no longer a constant, so that linearization of the torque in terms of a wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of experiments.

  • PDF

Unicycle-type 이동로봇의 비선형 제어 (Nonlinear control of unicycle-type mobile robot)

  • 김용진;문인혁
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.131-134
    • /
    • 2001
  • This paper proposes a stable control rule for nonlinear unicycle-type mobile robot. The control method uses a local error coordinate system, velocity and distance constants $\kappa$$\_$x/, $\kappa$$\_$y/, and he. Stability of control rule is proved Liapunov function. System input to the mobile robot is reference posture ($\chi$$\_$r/, y$\_$r/, $\theta$$\_$r/)/sup/ $\tau$/ and reference e velocity (ν$\_$r/,$\omega$$\_$r/)$\^$$\tau$/. System output of the mobi-le robot is velocity of driving wheels. We introduce limit velocity for preventing high initial speed. From simulation results, we can see the proposed control rule is stable.

  • PDF

무진동 크레인 구현을 위한 속도경로설계 연구 (Velocity trajectory planning for the implementation of anti-swing crane)

  • 윤지섭;박병석
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.143-152
    • /
    • 1994
  • The velocity trajectory profile of trolley is designed to minimize both swinging while transportation of load and the stop position error at the final stop position. This profile is designed to be automatically programmed by the digital control algorithm when the length of chain and the desired travel distance are given as a priori. Also, to minimize both swinging and the stop position error the anti-swing controller which improves poor damping characteristics of the crane and the stop position controller are employed. The experimentalresults of sequential adaptation of the velocity trajectory profile and these two controllers show that this control scheme has excellent control performance as compared with that of the uncontrolled crane system.

  • PDF