• Title/Summary/Keyword: Control system simulator

Search Result 1,090, Processing Time 0.025 seconds

Application of Robust Controller Design to Photovoltaic System Simulator (태양광발전 시뮬레이터의 강인제어설계 응용)

  • Lee, Youn;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.267-271
    • /
    • 2010
  • Photovoltaic system simulator is under being developed for the performance test of Power conditioning system (PCS). The photovoltaic system simulator is required to emulate real system, which can be obtained by fast response controller. In this paper, we suggest a robust control method as a tool to design the simulator controller. The performance of the controller is determined by weighting functions, sensitivity function $W_1$ complementary sensitiviey function $W_3$, and a control signal shaping function $W_u$. Experimental results show that robust control method is promising for obtaining better performance of the photovoltaic system simulator.

Development of a Hardware-in-the-loop Simulator for Spacecraft Attitude Control Using Thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Kim, Do-Hee;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a Hardware-In-the-Loop (HIL) simulator using thrusters is developed to validate the spacecraft attitude system. To control the attitude of the simulator, eight cold gas thrusters are aligned with roll, pitch and yaw axis. Also linear actuators are applied to the HIL simulator for automatic mass balancing to compensate the center of mass offset from the center of rotation. The HIL simulator consists of an embedded computer (Onboard PC) for simulator system control, a wireless adapter for wireless network, a rate gyro sensor to measure 3-axis attitude of the simulator, an inclinometer to measure horizontal attitude, and a battery set to supply power for the simulator independently. For the performance test of the HIL simulator, a bang-bang controller and Pulse-Width Pulse-Frequency (PWPF) modulator are evaluated successfully. The maneuver of 68 deg. in yaw axis is tested for the comparison of the both controllers. The settling time of the bang -bang controller is faster than that of the PWPF modulator by six seconds in the experiment. The required fuel of the PWPF modulator is used as much as 51% of bang-bang controller in the experiment. Overall, the HIL simulator is appropriately developed to validate the control algorithms using thrusters.

Study for the Design of Hydraulic Load Simulator (유압식 부하 시뮬레이터의 설계에 관한 연구)

  • 이성래;김형의;문의준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • Load simulator is essential to test and quality the performance of various control systems. It is good time to introduce a method to design and analyze the load simulator or since many research centers and industrial companies are trying to buy or design the load simulator. The stability, accuracy and response speed of the simulator are represented by the system parameters such as the hydraulic motor characteristics, the servovalve characteristics, supply pressure, rotational inertia, rotational spring constant, sensor and controller gains. Two design examples are shown here. A load simulator for a position control system and that for a velocity control system are designed. The goodness of the proposed method is verified by the digital computer simulations.

Development of Hardware-in-the-loop Simulator for TCS (TCS를 위한 HIL 시뮬레이터 개발에 관한 연구)

  • 서명원;이한주;박윤기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.194-205
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the need for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of traction control system by the methodology of using hardware-in-loop simulation based on a personal computer. By use of this simulator, the analysis of commercial electronic control units and components for TCS were performed successfully. The simulator of this research can be applied to development of more advanced control systems(suck as vehicle dynamics control system) and other automotive system.

  • PDF

Development of Battery Simulator for Performance Verification of MW-class PCS (MW급 PCS 성능검증용 배터리 모의장치 개발)

  • Lee, Jong-Hak;In, Dong-Seok;Heo, Nam-Eok;Park, Young-Min;Park, Ki-Won;Kwon, Byung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.160-167
    • /
    • 2016
  • An energy storage system (ESS) is applied to increase the energy efficiency of large plants or buildings that consume much energy, to improve the power quality of power systems, and to stabilize renewable energy source such as photovoltaic or wind turbine. The ESS is composed of a power conditioning system (PCS) and an energy storage. The battery is used as the energy storage. The battery is needed to design and verify a hardware and control system of PCS. Usually, a battery simulator is used instead of a battery, which is costly and hard to manage. In this paper, the development of the battery simulator for performance verification of the MW-class PCS is described. The battery simulator simulates the charging and discharging characteristics of batteries to design and verify the hardware and control system of PCS.

Development of a Hardware-In-Loop (HIL) Simulator for Spacecraft Attitude Control Using Momentum Wheels

  • Kim, Do-Hee;Park, Sang-Young;Kim, Jong-Woo;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.347-360
    • /
    • 2008
  • In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of space craft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System). The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

Development of Hardware-In-The-Loop Simulator for ABS (ABS를 위한 HIL시뮬레이터 개발)

  • 서명원;김석민;정재현;석창성;김영진;이선일;이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.155-167
    • /
    • 1998
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the meed for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of an anti-lock braking system and the methodology of using hardware-in-the-loop simulation based on a personal computer. By use of this simulator, the analyses of a commercial electronic control unit as well as the validation of the developed control logics for ABS were performed successfully. The simulator of this research can be traction applied to development of more advanced control system, such as traction control systems, vehicle dynamic control system and so forth.

  • PDF

Bimodal-tram Simulator using PXI Embedded Real-time Controllers (PXI embedded real-time controller를 이용한 Bimodal-tram Simulator)

  • Byun, Yeun-Sub;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper we present the Bimodal-tram simulator using the PXI embedded real-time controllers. The Bimodal-tram is developed in KRRI (Korea Railroad Research Institute). The vehicle can be automatically operated by navigation control system (NCS). For the automatic driving, the vehicle lanes will be marked with permanent magnets that are placed in the ground. The vehicle is controlled by NCS. NCS governs the manual mode and automatic mode driving. The simulator is designed by an identical conception with the real control condition. The dynamic motion of vehicle is simulated by the nonlinear dynamic model. The control computer calculates the control values. The signal interface is linked by CAN communication. The simulation is processed by real-time base. The test driver can see the graphic motion of vehicle and can operate the steering wheel, gas and brake pedal to control direction and velocity of vehicle during the simulation. At present, the simulator is only operated by manual mode. The automatic mode will be linked after the control algorithm is finished. We will use the simulator to develop the control algorithm in the automatic mode. This paper shows the simulator designed for Bimodal-tram using real-time based controller. The results of the test using the simulator are presented and discussed.

Distributed Simulator for General Control System in CEMTool

  • Lee, Tai-Ri;Lee, Young-Sam;Lee, Kwan-Ho;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2230-2234
    • /
    • 2003
  • This paper proposes a distributed simulator for general control system in CEMTool. Systems can be described by SIMTool likes the simulink in Matlab. For distributed simulation, we can seperate any system into several parallel subsystems in SIMTool. The number of parallel subsystem can be determined by the system's property. After seperation, parallel simulator will do initialization, one-step-ahead simulation, block-distribution and ordering and so on. Finally, simulator will create independent C codes and executive files for each subsystem. The whole system is fulfilled by several PCs, and each PC executes one subsystem. There are communications among these subsystem using reflective memory or ethernet. We have made several experiments, and the 5-stand cold rolling mill control system is our main target. The result of parallel simulation has shown effective speedup in comparison with one pc simulation.

  • PDF

Development of a Control and Virtual Realty Visual System for the Tilting Train Simulator (틸팅 차량용 시뮬레이터 적용을 위한 통제 및 가상현실 영상 시스템 개발)

  • Song Young-Soo;Han Seong-Ho;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • This paper presents a development of the control and the virtual reality visual system for a tilting train simulator. The user of the tilting train simulator is able to set up the environmental and operating conditions through the user interface provided by the control system. In the control system, an arbitrary track which has user-defined curve radius, length and direction can be generated. The virtual reality visual system provides an artificial environment that is composed of several facilities such as station, platform, track, bridge, tunnel and signaling system. In order to maximize the reality, all of the 3D modeling were based on the real photographs taken in the Jungang line. A dome screen with 1600mm diameter was used to maximize the view angle. The hemispherical screen can ensure the view angle of the 170 degrees of vertical direction and 135 degrees of lateral direction.