
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, KOREA

Distributed Simulator for General Control System in CEMTool

Tairi Lee∗, Young Sam Lee, Kwan Ho Lee, and Wook Hyun Kwon

∗School of Electrical Engineering & Computer Science, Seoul National University, Seoul, Korea

(Tel : +82-2-880-7314; E-mail: trlee@cisl.snu.ac.kr)

Abstract: This paper proposes a distributed simulator for general control system in CEMTool. Systems can be described by

SIMTool likes the simulink in Matlab. For distributed simulation, we can seperate any system into several parallel subsystems

in SIMTool. The number of parallel subsystem can be determined by the system’s property. After seperation, parallel simulator

will do initialization, one-step-ahead simulation, block-distribution and ordering and so on. Finally, simulator will create

independent C codes and executive files for each subsystem. The whole system is fulfilled by several PCs, and each PC executes

one subsystem. There are communications among these subsystem using reflective memory or ethernet. We have made several

experiments, and the 5-stand cold rolling mill control system is our main target. The result of parallel simulation has shown

effective speedup in comparison with one pc simulation.

Keywords: Distributed simulation, Simulator, Parallel, C Code, Speedup, CEMTool, SIMTool

1. INTRODUCTION

Distributed simulation or parallel simulation deals with wide

range problems and the ultimate object of distributed simu-

lation is to improve the computation speed of systems. Many

researchers have dealt with the concepts and algorithms of

parallel simulation.[1][2][4] Even though, there are a few re-

sults about system simulation example, but their objects are

not for computation speedup.[3]

Therefore, in the current paper, a new approach have made

to realize the distributed simulation for dynamical systems,

and the main result of this approach is computation speedup.

For dynamical systems, data communication and synchro-

nization must be taken in each step of distributed simula-

tion.

To attain the computation speedup of distributed simulation

for dynamical systems, we will build system with a block dia-

gram editor called SIMTool which likes the simulink in mat-

lab, and divide the system into several subsystems, and then

take the simulation and computation in CEMTool. SIMTool

and CEMTool are popular tools in many universities of Ko-

rea.

The speed of data communication is very important for the

distributed simulation of dynamical system since the system

need data communication in each step. If the time of commu-

nication is much larger than that of computation, it is hard

to realize speedup. To shorten the time of communication,

we use reflective memory as the media of communication.

Distributed simulator is a universal simulator for any dy-

namical system. we construct a system model called 5 stand

cold rolling mill as our main target since 5 stand cold rolling

mill system has more than 2 thousands blocks and this sys-

tem need long computation time and enough complexity to

demonstrate the common use of distributed simulator.

To execute high speed simulation of dynamical system, we

propose a structure of multiple C code generation. After di-

viding the whole system into several subsystems in SIMTool,

we generate C code for each subsystem and compile these C

codes to executive files finally. One subsystem simulation

is executed in one PC and there are data communication

among these subsystems with reflective memory in each step.

This paper will show that distributed simulation can bring

the speedup by dividing the the 5 stand mill system.

The overall introduction for distributed simulation in CEM-

Tool is described in Section 2. In Section 3, the detailed

structure and the procedure of the whole multiple C code

generation is discussed. In Section 4, experiments show the

results of distributed simulation. Finally, the conclusion is

given in Section 5.

2. Introduction for distributed simulation

Distributed simulation mainly includes three parts. They

are system division, multiple C code generation, execution.

First, the system division is done in SIMTool. The division

process divide the system into several parallel blocks, and

one parallel block represents one subsystem. Ordinary, there

are some connections between two subsystems, including real

connection and virtual connection. Real connection is made

by connection line and virtual connection is made by from

and goto blocks.

Second, multiple C code generation is made in CEMTool af-

ter system division in SIMTool. SIMTool notifies CEMTool

the direction of distributed simulation by DDE communica-

tion, and the information of divided system are included in

out file. For example, the system named pblk.blk is divided

to three subsystems as described in Fig 1.

����������������통신통신통신통신����������������통신통신통신통신

Generate C-c o d esGenerate C-c o d es PBlk.outPBlk.out

�������

� � �����

���������������������������� ����������������������������				�������������������������������� ����������������������������				����

����
������
������
������
�� ����������������



��������				��������
������
������
������
�� ����������������



��������				����

���������������������������� ����������������������������				�������������������������������� ����������������������������				����

Fig. 1. The basic procedure for the parallel simulation in

SIMTool and CEMTool



SIMTool creates system information file pblk.out and CEM-

Tool reads this out file when receives the order by DDE

communication. Since there are three subsystems, CEM-

Tool generates pblk0.c, pblk1.c and pblk2.c, these C files

can be compiled to executive files pblk0.exe, pblk1.exe and

pblk2.exe.

The multiple C code generation is made by distributed sim-

ulator in CEMTool, which includes following processes, ini-

tialization, one-step-ahead simulation, block distribution, or-

dering and final parallel block C code generation.

Finally, these three executive files fulfilled in three PC and

there are data communications in each simulation step as

seen in Fig2. The media for data communication can be re-

flective memory or ethernet, but there is speedup only when

media is reflective memory.

��������������
� � ��� � � � � 	 
 � � 


�����

�����

�����

����� ������� ��

����	 ������	 ��

� � ��� � � � � 	 
 � � 


� � ��� � � � � 	 
 � � 


Fig. 2. 5 stand cold rolling mill system

3. Realization of distributed simulation

Starting discussion of distributed simulation, 5 stand mill

system is introduced as a target model. And then describe

the detailed process of distributed simulation using this sys-

tem model.

3.1. 5 stand cold rolling mill system

5 stand cold rolling mill is a metal working process whereby

strip or sheet metal is deformed by successive rolling oper-

ation. Each rolling operation is achieved by squeezing the

strip between a set of rolls. To achieve the required reduc-

tion and final tolerance for any given product, several rolling

operations will be required and these are done in tandem

to achieve high production volumes of specific product and

result in the high precision of thickness while a single stand

rolling mill operation is suitable for achieving low production

volumes of a variety of products. The 5 stand cold rolling

mill system is shown in Fig 3.

���������	
�����
�
������������

�� � �������	
����� � ��� �� �
��
���

��������� ��� ���

�� � �� � �� � �� � �� �

� ��	 
���


 �����
�����


Fig. 3. 5 stand cold rolling mill system

We have described the 5 stand mill system in SIMTool as Fig

4. It consists of plant, controller and setup, but the compu-

tation loads of three parts are not well-balanced, plant holds

more than 60% loads. In this paper, we divide the system

into these three subsystems, so our speedup of distributed

simulation is not very high.

5 stand mill system is composed of more than 2 thousands

blocks, start time of 0, finish time of 40, time step of 0.001.

Fig. 4. 5 stand mill system described in SIMTool

3.2. System division in SIMTool

SIMTool is a block diagram editor for modelling dynamical

systems and interacts with CEMTool for simulating and an-

alyzing them. A block diagram modelling a dynamical sys-

tem is drawn by first dragging adequate blocks from block

libraries to the canvas, secondly connecting them with lines

and finally setting the block parameters of each block.

SIMTool is just a block diagram editor and simulation is per-

formed in CEMTool. Communication mechanism between

SIMTool and CEMTool is a Microsoft Windows DDE proto-

col where DDE stands for dynamic data exchange.

If we separate the whole system into several subsystems us-

ing parallel blocks, communication ports named ComInport

and ComOutport will be generated for data communication

among systems. Fig5 is the result of 5 stand mill system

distribution.

Fig. 5. 5 stand mill system described in SIMTool

To generate multiple C code, select autotool configuration

102



item in autotool menu of SIMTool. Then we can see the

menu window as Fig5. There are radio buttons for single

C code or multiple C code generation. If we select single C

code generation, CEMTool just generate one set of C code

for one PC simulation. We can make choice for multiple C

code generation to execute parallel simulation.

From Fig5, there is no connection line between any two sub-

systems of 5 stand mill system because the subsystems are

linked by virtual connection with From and Goto blocks.

From and Goto blocks find their connection counterpart us-

ing tag whose property is classified into global and local.

Local means Goto block and From block are in the same Su-

perblock while Global means they can be in any Superblock.

When create out file, SIMTool get the flat canvas of target

system, which means dissolute the Superblocks and connect

the virtual connection From and Goto blocks. In parallel

simulation, if From and Goto blocks are not in the same

parallel block, they are converted to communication port

ComOutport and ComInport.

Also we can select the communication media from reflective

memory and ethernet as seen in Fig5.

3.3. Multiple C code generation in CEMTool

At the beginning of this section, we compare the result of

single C code generation and that of multiple C code gener-

ation.

�� � � � � � � 	 
 
 � �

�� � � � � � � 	 
 
 � 
 � �

�� � � � � � � 	 
 
 � �

�
� � 	 � � 
 � � � � � �

� � � � � � 	 � � � �

� � � � � 
 � � � �

� � � � � � � � �

� � � � � �

�� � � � � � � 	 
 
 � � � �

Fig. 6. one PC simulation for 5 stand mill system

At the case of single C code generation for 5 stand mill sys-

tem, 5stand mill.c, 5stand mill.prm and 5stand mill.h are

generated and compile these files with nrt main and other

required files into 5stand mill.exe as described in Fig6, and

then using this exe file we can do high speed simulation in

one PC.

�� � � � � � � 	 
 
 � � 


�� � � � � � � 	 
 
 � � � � �

�� � � � � � � 	 
 
 � � �

�
� � 	 � � � � � � � � �

� � � � � � � 	 � � � �

� � � � � 
 � � � �

� � � � � � � � �

� � 
 � � �

�� � � � � � � 	 
 
 � � � � �

� � � � � � � 	 � � � � � �

Fig. 7. distributed simulation for 5 stand mill system

When multiple C code generation for 5 stand mill sys-

tem, suppose that the system is separated into three

parts, 5stand mill0.c, 5stand mill0.prm and 5stand mill0.h

are generated for the first subsystem, and 5stand mill1.c,

5stand mill1.prm, 5stand mill1.h, 5stand mil2.c, 5stand mil2.prm

and 5stand mil2.h are also formed. Besides these files, reflec-

tive memory communication files rmfunctions0.c, rmfunc-

tions1.c and rmfunctions2.c are generated. As described in

Fig7, first set of files can be compiled into 5stand mill0.exe.

The process of distributed simulator in CEMTool genera-

tion mainly includes initialization, one-step-ahead simula-

tion, block distribution, ordering and multiple C code gen-

eration.

���

y2(k)y1(k) �

종속적인 블 록

Fig. 8. reason of one-step-ahead

First, one-step-ahead simulation is necessary for distributed

simulation. As described in Fig8, y1 and y2 belong to dif-

ferent parallel blocks. In kth step, to compute the value of

y2(k), we need the value of y1(k). If there are no one-ahead-

step simulation, there is only the value of y1(k − 1). Simply

speaking, at first step, to compute the value of y2(1), we

need the value of y1(1). So we take the simulation for one

step, and initialize the communication ports of subsystems.

�

�

�

�

�

�

�

�

	




��

��

��

�

�

�

�

��

��

�

�

	

��

�

�




� � 
 � � � � � � � 
 � � � � � � � 
 � � � � �

�

�

�

�

�

�

�

�

	




��

��

��

�

�

�

�

��

��

�

�

	

��

�

�




� � 
 � � � � � � � 
 � � � � � � � 
 � � � � �

Fig. 9. block distribution

Second, CEMTool create arrays for subsystems, and all

blocks are put into these arrays according to there paral-

lel block number PBlkID. All these information is from out

file created by SIMTool.

����� LL

��������	


��������	
��������	
��������	
��������	


��������	


��������	


��������	


��������	
��������	
��������	
��������	


��������	
��������	
��������	
��������	


� � � ������

� �� �� �� �� �� �� �� �����	
����	
����	
����	



 �� �����	



 �� �����	


� �� �� �� �� �� �� �� �����	
����	
����	
����	


� �� �� �� �� �� �� �� �����	
����	
����	
����	



 �� �����	



 �� �����	



 �

� � � � ��

�

� � � � �� � �

� �

����� LL

��������	


��������	
��������	
��������	
��������	


��������	


��������	


��������	


��������	
��������	
��������	
��������	


��������	
��������	
��������	
��������	


� � � ������

� �� �� �� �� �� �� �� �����	
����	
����	
����	



 �� �����	



 �� �����	


� �� �� �� �� �� �� �� �����	
����	
����	
����	


� �� �� �� �� �� �� �� �����	
����	
����	
����	



 �� �����	



 �� �����	



 �

� � � � ��

�

� � � � �� � �

� �

Fig. 10. block distribution

Third, ordering blocks is also very important for distributed

103



simulation. Wrong ordering blocks may result miscalculation

and halt of data communication. ComInport has the highest

priority in ordering and ComOutport has the lowest one.

Fig10 reveals the offset computation for data communication

by computing communication port data size.

Finally, we can start the C code generation after former

steps. Parallel simulator includes .c file generator, header

file generator, parameter generator, communication file gen-

erator, batch file generator.

After the executive files have been made for each subsystems,

we start the distributed simulation using reflective memory.

The flow chart of distributed simulation with reflective mem-

ory is Fig11.

�����

� � � � 	 �	 �
 	 � � 
 �

� � 	 �	 �
 	 � � 
 �

� � �� � 	 �	 �
 � ���� 
 �

� � �
 � � �� � �
 �

� � � ��� � � �� � �
 �

� ���� � � � ��� 
 �

� � � � � � � � �	 �� � � 
 �

� � � � � � � � � �� � � 
 �

� � �� 	 � ��� 
 �

�����

� � � � 	 �	 �
 	 � � 
 �

� � 	 �	 �
 	 � � 
 �

� � �� � 	 �	 �
 � ���� 
 �

� � �
 � � �� � �
 �

� � � ��� � � �� � �
 �

� ���� � � � ��� 
 �

� � � � � � � � �	 �� � � 
 �

� � � � � � � � � �� � � 
 �

� � �� 	 � ��� 
 �

Fig. 11. flow chart of distributed simulation with reflective

memory

In distributed simulation, reflective memory initialization,

system and state initialization are made first, then the par-

allel simulation get into computation loop. Each step for

subsystem consists of updating inner value of subsystem and

communicating with other subsystems. Before writing and

reading, there must be synchronization for all subsystems

because subsystem write or read data at fixed address of

reflective memory.

Distributed simulation with ethernet also can be realized.

But the communication time with ethernet is too long to get

speedup. So using ethernet is just a experience of distribu-

tion simulation for who don’t have reflective memory.

4. Results

In our experiment, we selected 3 PCs with reflective memory.

The 3 PCs are linked with optical cables and their CPU

speeds are 750MHz, 500MHz and 400MHz respectively.

When we choose single C code generation and make the sim-

ulation in one PC, the simulation times are 30seconds, 52sec-

onds and 63seconds respectively.

Table1 is the time list of distributed simulation for 5 stand

Table 1. simulation time of distributed simulation for 5

stand mill system

Time CPU1(750MHz) CPU2(500MHz) CPU3(400MHz)

20s plant controller setup

22s plant setup controller

38s controller plant setup

40s controller setup plant

45s setup controller plant

38s setup plant controller

mill system. Since the speeds of tested PCS are ill-balanced

and the computation loads of subsystems of 5 stand mill are

also out of balance, the speedup is not so high. But we can

see that there is time saving at least, and the speedup in this

distributed simulation is about 1.5 because the computation

load of plant is over 60% of the 5 stand mill system.

Fig. 12. the thickness value of 5 stand mill system

The accuracy of computation results of distributed simula-

tion is also very important. Fig12 is the graph of 5th thick-

ness of 5stand mill system. The results of distributed simu-

lation agree with that of those of one PC simulation.

Fig. 13. distributed simulation for inverted pendulum

Another experiment is made with inverted pendulum system

which is very sensible to outside disturbance. Fig13 is the

graph of distributed simulation of inverted pendulum. The

104



results of distributed simulation also agree with those of one

PC simulation.

5. Conclusion

In this paper, distributed simulation for dynamic system is

presented. A system can be separated into several subsys-

tems in SIMTool, and then generate multiple C code for

those subsystems. Our main object of distributed simulation

is to get speedup through contributing computation load to

several PCs. The results show that there is definite time

saving for 5 stand cold rolling mill system which have more

than 2 thousands blocks. The time of data communication

is very important for distributed simulation and directly af-

fect the simulation time. In this paper, we use reflective

memory as communication media that has high speed data

transmission.

References

[1] Kai Hwang and Zhiwei Xu, Scalable Parallel Comput-

ing, McGraw-Hill, 2000.

[2] C.D.Pham, Comparison of Message Aggregation Strate-

gies for Parallel Simulations on a High Performance

Cluster, Modeling, Analysis and Simulation of Com-

puter and Telecommunation Systems, 2000.

[3] L.Pollini and M.Innocenti, A synthetic environment

for dynamic systems control and distributed simula-

tion, IEEE Control Systems Magazine, vol.20, pp.49-61,

April 2000.

[4] Barry Wilkinson and Michael Allen, Parallel Progam-

ming, An Alan R.Apt Book, 1999.

105


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2230
	page21: 2231
	page31: 2232
	page41: 2233
	page51: 2234


