• Title/Summary/Keyword: Control rule table

Search Result 51, Processing Time 0.024 seconds

A Study on the Optimal Performance Control of Heat Pump System for Heating Mode Operation (열펌프 시스템의 난방 운전 시 최적 성능 제어에 관한 연구)

  • Yoo, Keun-Joong;Lee, Il-Hwan;Lee, Gil-Bong;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.669-674
    • /
    • 2006
  • The optimal control of heat pump performance for heating mode operation was investigated. Fuzzy logic was applied to control the heating performance of heat pump system and superheat at compressor discharge was taken as a control variable. Regression model was adapted to determine the optimal points where COP is maximized. Optimization of fuzzy rule table was investigated to improve operation performance of heat pump system. Experiments were carried out using original fuzzy table and the modified fuzzy rule table for heating mode operation of heat pump system. The results show that control performance of heat pump system with the modified fuzzy rule table was better than that with the original rule table.

  • PDF

On the machine error measurement and compensation (NC 공정기계에서 온더머신 오차측정 및 보상)

  • 신동수;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1096-1101
    • /
    • 1992
  • In order tominimize fixing error of workpieces, circle, prismatic, sphere, cylindrical and sculptures types. Modification Rule by Indexing Table and Modification Rule by NC Program are developed for machining centers by using touch trigger probes. The Modification Rule by Indexing Table meas the alignment of workpiece to NC program through degree of freedoms of indexing table. The Modification Rule by NC Program is the alognment of NC program to workpiece ste-tp condition via the generation of NC progarm. A postprocessing module is alos developed for generating NC-part program(User Macro) to compensate for machining errors in end milling and boring processes. Developed method are verified by experiments.

  • PDF

FLNN-Based Friction Compensation Controller for XY Tables (FLNN에 기초한 XY Table용 마찰 보상 제어기)

  • Chung, Chae-Wook;Kim, Young-Ho;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.113-119
    • /
    • 2002
  • An FLNN-based neural network controller is applied to precise positioning of XY table with friction as the extension study of [11]. The neural network identifies the frictional farces of the table. Its weight adaptation rule, named the reinforcement adaptive learning rule, is derived from the Lyapunov stability theory. The experimental results with 2-DOF XY table verify the effectiveness of the proposed control scheme. It is also expected that the proposed control approach is applicable to a wide class of mechanical systems.

Determination of the Input/Output Relations and Rule Generation for Fuzzy Combustion Control System of Refuse Incinerator using Rough Set Theory (Rough Set 이론을 이용한 쓰레기 소각로의 퍼지제어 시스템을 위한 입출력 관계 설정 및 규칙 생성)

  • 방원철;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.81-86
    • /
    • 1997
  • It is proposed, for fuzzy combustion control system of refuse incinerator to find the relationship between inputs and outputs and to generate rules to control by using rough set theory. It is not easy to find out the corresponding inputs for each output and the control rules with incomplete or imprecise information consisting expert knowledge, process and manipulator values in the field, and operation manual for the given system. Most decision problems can be formulated employing decision table formalism. A decision table on fuzzy combustion control system for refuse incinerator is simplified and produces control(rules). The I/O realtions and the control rules found by rough set theory are compared with the previous result.

  • PDF

The Automatic Temperature and Humidity Control System for Laver Drying Machine Using Fuzzy (퍼지를 이용한 해태건조기용 자동 온도${\cdot}$습도 제어시스템)

  • 김은석;주기세
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.167-173
    • /
    • 2002
  • The look up table method conventionally applied to control the inner temperature and humidity of a laver drying machine has repeatedly occurred not only laver's damage but also inferior goods since the reaching time at the optimum state takes a long time. In this paper, a fuzzy control theory instead of the look up table was proposed to reduce the reaching time at the optimum state. The proposed method used six input variables and four output variables for the fuzzy control, and a triangle rule for a fuzzifier, The Mandani's min-max method was applied to a fuzzy inference. Also, the mean method of maximum was applied to a defuzzifier. The method applied to the fuzzy controller contributed to reduce the reaching time at the optimum state, and to minimize not only laver's damage but also inferior goods.

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF

Digital Position Control of BLDD Motor using Fuzzy Speed Controller (퍼지 속도 제어기를 이용한 BLDD 모타의 이산 위치 제어)

  • Ko, Jong-Sun;Hwang, Jae-Gyu;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.892-894
    • /
    • 1993
  • In this paper, a new control for the robust position control of a brushless direct drive(BLDD) motor using fuzzy logic controller(FLC) is presented. The integral-proportional(IP) position with speed FLC is employed to obtain the robust BLDD motor system, which is approximately linearized using the field-orientation method for an AC servo. The speed FLC for a BLDD motor has the two rule tables. One is the coarse rule table for the transient state and another is the fine rule table for the steady state. The overall system is controlled by using the microprossor in IBMPC 486 and the the robustness is also obtained.

  • PDF

The Performance Improvement of Fuzzy Controller using the Shifting Method of Rule Base Table (규칙기반 표의 추이 방법을 이용한 퍼지제어기의 성능개선)

  • Che Wen-Zhe;Lee Chol-U;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.6
    • /
    • pp.55-62
    • /
    • 2005
  • It is essential for a fuzzy logic controller to have an appropriate set of rules to perform at the desired level. The linguistic structure of the fuzzy logic controller allows a tentative linguistic policy to be used as an initial rule base. At the design stage, if one can reasonably assemble a good collection of rules, it may then be possible to be tuned to improve the controller performance. In this paper, we proposed the shifting method of rule base table to improve the performance of fuzzy controller. The proposed method is based on the principle of that the effect of the output to regulate the system would be greater when the error increases and the effect of output would be less when the error decreases. According to simulation results, it is an effective method to improve the fuzzy control rule base and the performance of fuzzy logic controllers.

The Look-up table Plus-Minus Tuning Method of Fuzzy Control Systems (퍼지제어 시스템의 제어값표 가감 동조방법)

  • Choi, Han-Soo;Jeong, Heon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.388-398
    • /
    • 1998
  • In constructing fuzzy control systems. there are many parameters such as rule base. membership functions. inference m method. defuzzification. and I/O scaling factors. To control the system in properly using fuzzy logic. we have to consider t the correlation with those parameters. This paper deals with self-tuning of fuzzy control systems. The fuzzy controller h has parameters that are input and output scaling factors to effect control output. And we propose the looklongleftarrowup table b based self-tuning fuzy controller. We propose the PMTM(Plus-Minus Tuning Method) for self tuning method, self-tuning the initial look-up table to the appropriate table by adding and subtracting the values.

  • PDF

A Fuzzy Controller for Obstacle Avoidance Robots and Lower Complexity Lookup-Table Sharing Method Applicable to Real-time Control Systems (이동 로봇의 장애물회피를 위한 퍼지제어기와 실시간 제어시스템 적용을 위한 저(低)복잡도 검색테이블 공유기법)

  • Kim, Jin-Wook;Kim, Yoon-Gu;An, Jin-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.60-69
    • /
    • 2010
  • Lookup-Table (LUT) based fuzzy controller for obstacle avoidance enhances operations faster in multiple obstacles environment. An LUT based fuzzy controller with Positive/Negative (P/N) fuzzy rule base consisting of 18 rules was introduced in our paper$^1$ and this paper shows a 50-rule P/N fuzzy controller for enhancing performance in obstacle avoidance. As a rule, the more rules are necessary, the more buffers are required. This paper suggests LUT sharing method in order to reduce LUT buffer size without significant degradation of performance. The LUT sharing method makes buffer size independent of the whole fuzzy system's complexity. Simulation using MSRDS(MicroSoft Robotics Developer Studio) evaluates the proposed method, and in order to investigate its performance, experiments are carried out to Pioneer P3-DX in the LabVIEW environment. The simulation and experiments show little difference between the fully valued LUT-based method and the LUT sharing method in operation times. On the other hand, LUT sharing method reduced its buffer size by about 95% of full valued LUT-based design.