• Title/Summary/Keyword: Control of the Time

Search Result 29,473, Processing Time 0.061 seconds

Optimal Design of Discrete Time Preview Controllers for Semi-Active and Active Suspension systems

  • Youn, Il-Joong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.807-815
    • /
    • 2000
  • In this paper, modified discrete time preview control algorithms for active and semi-active suspension systems are derived based on a simple mathematical 4 DOF half-car model. The discrete time preview control laws for ride comfort are employed in the simulation. The algorithms for MIMO system contain control strategies reacting against body forces that occur at cornering, accelerating, braking, or under payload, in addition to road disturbances. Matlab simulation results for the discrete time case are compared with those for the continuous time case and the appropriateness of the discrete time algorithms are verified by the of simulation results. Passive, active, and semi-active system responses to a sinusoidal input and an asphalt road input are analysed and evaluated. The simulation results show the extent of performance degradation due to numerical errors related to the length of the sampling time and time delay.

  • PDF

Analysis of a network for control systems in nuclear power plants and a case study (원자력 발전소 제어계통을 위한 네트워크의 해석과 사례 연구)

  • Lee, Sung-Woo;Yim, Han-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.734-743
    • /
    • 1999
  • In this paper, a real-time communication method using a PICNET-NP(Plant instrumentation and Control Network for Nuclear Power plant) is proposed with an analysis of the control network requirements of DCS(Distributed Control System) in nuclear power plants. The method satisfies deadline in case of worst data traffics by considering aperiodic and periodic real-time data and others. In addition, the method was used to analyze the data characteristics of the DCS in existing nuclear power plant. The result shows that use of this method meets the response time requirement(100ms).

  • PDF

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

Fuzzy-Sliding Mode Control for Chattering Reduction (채터링 감소를 위한 퍼지 슬라이딩모드 제어)

  • Lee, Tae-Kyoung;Han, Jong-Kil;Ham, Woon-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-398
    • /
    • 2001
  • This paper presents a new method with time-varying boundary layer and input gain, variated by Fuzzy Logic Control(FLC) by means of the system state in Sliding Mode Control (SMC). In addition to the time-varying boundary layer, the time-varying range of the fuzzy membership function has an effect on not only chattering reduction but also fast response characteristics. On the basis of SMC with time-varying boundary and FLC with time-varying input and output range, a computer simulation for inverted pendulum results in elimination of the chattering phenomenon and fast response.

  • PDF

Voltage Feedforward Control with Time-Delay Compensation for Grid-Connected Converters

  • Yang, Shude;Tong, Xiangqian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1833-1842
    • /
    • 2016
  • In grid-connected converter control, grid voltage feedforward is usually introduced to suppress the influence of grid voltage distortion on the converter's grid-side AC current. However, owing to the time-delay in control systems, the suppression effect of the grid voltage distortion is seriously affected. In this paper, the positive effects of the grid voltage feedforward control are analyzed in detail, and the time-delay caused by the low-pass filter (LPF) in the voltage filtering circuits and digital control are summarized. In order to reduce the time-delay effect on the performance of the feedforward control, a voltage feedforward control strategy with time-delay compensation is proposed, in which, a leading correction of the feedforward voltage is used. The optimal leading step used in this strategy is derived from analyzing the phase-frequency characteristics of a LPF and the implementation of digital control. By using the optimal leading step, the delay in the feedforward path can be further counteracted so that the performance of the feedforward control in terms of suppressing the influence of grid voltage distortion on the converter output current can be improved. The validity of the proposed method is verified through simulation and experiment results.

Closed-loop structural control with real-time smart sensors

  • Linderman, Lauren E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1147-1167
    • /
    • 2015
  • Wireless smart sensors, which have become popular for monitoring applications, are an attractive option for implementing structural control systems, due to their onboard sensing, processing, and communication capabilities. However, wireless smart sensors pose inherent challenges for control, including delays from communication, acquisition hardware, and processing time. Previous research in wireless control, which focused on semi-active systems, has found that sampling rate along with time delays can significantly impact control performance. However, because semi-active systems are guaranteed stable, these issues are typically neglected in the control design. This work achieves active control with smart sensors in an experimental setting. Because active systems are not inherently stable, all the elements of the control loop must be addressed, including data acquisition hardware, processing performance, and control design at slow sampling rates. The sensing hardware is shown to have a significant impact on the control design and performance. Ultimately, the smart sensor active control system achieves comparable performance to the traditional tethered system.

The robust control for a linear time-varying system using state transformation (상태 변환을 이용한 선형 시변 시스템에 대한 강건한 제어)

  • Cho, Do-Hyeoun;Lee, Sang-Hyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • This paper is focussed on the problem of robustly stabilizing a transformable linear time-varying system. The considered system is a class of state feedback transformable linear systems. First, the real linear time-varying system is transformed into the linear time invariant system composed with the time-invariant linear part and the time-varying uncertainty part. Second, the solution to a quadratic stabilization problem in the transformed linear system is give via' Lyapunov methods. Then this solution is used to construct a stabilizing linear control law for the real linear time-varying system.

  • PDF

Control of Discrete Time Nonlinear Systems with Input Delay (입력지연을 갖는 이산 시간 비선형 시스템의 제어)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.509-512
    • /
    • 2012
  • This paper presents the state feedback control design for discrete time nonlinear systems where there exists a time delay in input. It is shown that under some boundedness condition, the time delay nonlinear systems can be transformed into the time delay linear systems with time varying parameters. Sufficient conditions for existence of stabilizing state feedback controller are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Modeling of a Continuous-Time System with Time-delay

  • Park, Jong-Jin;Choi, Guy-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative examples are given to demonstrate the effectiveness of the developed method.

The Congestion Control using Selective Slope Control under Multiple Time Scale of TCP (TCP의 다중 시간 간격에서 선택적 기울기 제어를 이용한 혼잡 제어)

  • Kim, Gwang-Jun;Kang, Ki-Woong;Lim, Se-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we extend the multiple time scale control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of multiple time scale TCP is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. If source traffic is not extended exceeding, when RTT is 450ms, in self similar burst environment, performance gain of TCP-SSC is up to 45% for ${\alpha}$=1.05. However, its is acquired only 20% performance gain for ${\alpha}$=1.95 relatively. Therefore we showed that by TCP-MTS at large time scale into a rate-based feedback congestion control, we are able to improve two times performance significantly.

  • PDF