• Title/Summary/Keyword: Control of the Direction of Wind

Search Result 164, Processing Time 0.034 seconds

Modeling and prediction of rapid pollution of insulators in substations based on weather information

  • Nanayakkara, Nishantha;Nakamura, Masatoshi;Goto, Satoru;Taniguchi, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.202-206
    • /
    • 1994
  • Mathematical model of the pollution rate of substation insulators is constructed, taking the model parameters as wind speed, wind direction, typhoon conditions and rainfall in an hourly basis. The main feature of model construction is to distinguish the effect of each parameter by separately analyzing the positive and negative pollution causing factors. Model parameters for the insulators of Karatsu substation, Saga, Japan were estimated and model validation was done using the actual data, in which the pollution deposits on the insulators were measured using pilot insulator and 'salt meter'. The proposed model of the pollution rate [mg/cm$^{2}$/hr] enables the identification of the effective parameters and prediction of the pollution rate so that it helps for the automatic decision making for insulator cleaning or the model can be used as a tool for the substation engineers to make precautionary measures.

  • PDF

A Study on the Improvement of SAR Capabilities in Korea -Analysis of marine casualties and leeway field experiment- (우리나라의 SAR능력 향상에 관한 연구 -해난사고 분석 및 Leeway 현장실험-)

  • 윤종휘;이문진;장하룡;고성정
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • We studied the characteristics of marine casualties within the area under control of Korea National Maritime Police and leeway of drifting vessel. According to 5 years'(1995~1999) data of casualties, it was found that the occurrence of casualties by fishing boats ranked the highest and a considerable numbers of casualties took place more than 20 miles off the shore. From a result of field experiment of G/T 50 tons vessel off Busan harbor on Apr. 26~28, 2000, we computed that the linear equation of leeway speed(cm/s) was 1.01$\times$U(U : wind speed in m/s)+11.36 with correlation coefficient between wind speed and leeway speed being 0.252 and we found leeway angle range from $+87^{\circ}$(right) to $-78^{\circ}$(left ) of the downwind direction.

  • PDF

Effect of White and Blue Wind Net Shading on the Quality of 'Fuji' and 'Hongro' Apple Fruits (백색 및 청색 방풍망 차광 처리가 '후지', '홍로' 사과 과실의 품질에 미치는 영향)

  • Kang, Kyeong-Jin;Seo, Jeong-Hak;Yoon, Hong-Ki;Seo, Jeong-Seok;Joo, Jung-Il;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.120-129
    • /
    • 2020
  • In Yesan-gun, Korea's main apple-producing region, the area of apple cultivation and yield are declining. In particular, the worsening quality of fruits due to unusually high temperatures amid recent climate change has also become a major challenge for apple orchards located on flatlands. The objective of this research is to investigate quality changes of apples according to different growing environments, depending on the shade of the sun, by covering the trees with different colors of wind nets. A white and blue wind nets with a hole size of 2 × 2 mm is installed on two experimental trees, 17-year-old 'Fuji' and 'Hongro', which are planted 1.5 m × 3.5 m in the north-south direction. Treatment of wind nets effectively lowered fruit surface temperature regardless of apple variety. When measuring the temperature of the fruit surface at 2 pm, the temperature of the air was 34.8℃, but the 'Fuji' of the untreated blocks was the highest at 40.0℃, while the blue wind net and the white wind net were significantly lower at 34.9℃ and 36.6℃, respectively. In 'Hongro', the results showed that the surface temperature was effectively lowered by recording 38.3℃ for the blue wind net and 38.5℃ for the white wind net treatment when the untreated one was 44.2℃. According to the color difference in 'Fuji', the skin redness (a) was the lowest with untreated control at 16.5, but the blue and white wind net treatment higher at 18.0 and 19.3, respectively. In 'Hongro', the white wind net treated fruit also showed a much higher skin redness than the untreated control of 28.1, showing much higher a of 34.9. Sunburn damage in 'Fuji' apples amounted to 9.4% in untreated control. However, the blue and white wind net treatment revealed to 3.8% and 4.2%, respectively. In 'Hongro', those damage in the fruits treated with blue or white wind net, accounted for only 8.8% and 12.4%, respectively, significantly lower than 28.8% occurrence of untreated one. And, these results were understood to be the result of low UV radiation being blocked by the treatment of wind nets.

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

The Analyses of Dynamic Characteristics and Flight Test Results of Airship Throughout the Flight Test (비행 시험을 통한 비행선의 운동 특성 해석 및 시험 결과 분석)

  • Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.214-221
    • /
    • 2005
  • For decades, airships have being developed in Europe (especially German) and America. Airships are planning to be used for advertisements and airliners as well. In Korea, KARI (Korea Aerospace Research Institute) is developing stratospheric communication airship and the similar research is carried out in Japan. Among them, Zeppelin of German has the cutting-edge airship technology with Zeppelin NT. In this paper, the flight performance and stability were evaluated by comparing mathematical theory and the real test. The stability was examined through dynamic modeling and assured by designing controllers at each flight mode. Elevator angle, rudder angle, magnitude of thrust and tilting angle of thrust vector were used as control inputs. Moreover, after measuring the airship velocity, flight direction, magnitude and direction of the wind, attitude angles and trajectories of the airship at each flight mode, the results were compared with the simulation. To get the reasonable data, low-pass filter and band-stop filter were designed to get rid of the sensor noise and engine vibration. The test was accomplished at cruise mode, turning mode, and deceleration. To conclude, with comparing the simulation data and flight test data, it could be known that the dynamic model used in this paper was reasonable.

An auto weather-vaning system for a DP vessel that uses a nonlinear controller and a disturbance observer

  • Kim, Dae Hyuk;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.98-118
    • /
    • 2014
  • An auto weather-vaning system for a Dynamic Positioning (DP) vessel is proposed. When a DP vessel is operating, its position keeping is hindered by ocean environmental disturbances which include the ocean current, wave and wind. Generally, most ocean vessels have a longitudinal length that is larger than the transverse width. The largest load acts on the DP vessel by ocean disturbances, when the disturbances are incoming in the transverse direction. Weather-vaning is the concept of making the heading angle of the DP vessel head toward (or sway from) the disturbance direction. This enables the DP vessel to not only perform marine operations stably and safely, but also to maintain its position with minimum control forces (surge & sway components). To implement auto weather-vaning, a nonlinear controller and a disturbance observer are used. The disturbance observer transforms a real plant to the nominal model without disturbance to enhance the control performance. And the nonlinear controller deals with the kinematic nonlinearity. The auto weather-vaning system is completed by adding a weather-vaning algorithm to disturbance based controller. Numerical simulations of a semi-submersible type vessel were performed for the validation. The results show that the proposed method enables a DP vessel to maintain its position with minimum control force.

EXPERIMENTAL REPRODUCTION AND NUMERICAL ANALYSIS OF THE SIDE FORCE ON AN OGIVE FOREBODY AT A HIGH ANGLE OF ATTACK (고받음각 동체에 발생하는 측력의 실험적 재현 및 수치적 분석)

  • Lee, E.S.;Lee, J.I.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • Behavior of the side force generated at high angles of attack by two ogive-cylinder bodies of revolution with nose fineness ratio of 2.3 (B1) and 3.5 (B2) and the effect of a strip placed close the nose tip of each body (B1S and B2S) are analyzed through the wind tunnel test at ReD=200,000 and a=42~60 deg. The side force generated by B1 is increased by placing a strip. The side force generated by B2 is in the starboard direction and its magnitude is higher than that of the B1S. The effect of the strips with various dimensions placed on B2 is investigated. It is found that the 4-layer strip placed on the starboard reversed the direction of the side force into port direction. It is confirmed by numerical simulations that the strip promotes the flow separation and increases the average pressure on the side where it is placed and consequently produces the side force in the corresponding direction.

Numerical Investigation of Jet Interaction for Missile with Continuous Type Side Jet Thruster

  • Kang, Kyoung Tai;Lee, Eunseok;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • A continuous type side jet controller which has four nozzles with thrust control devices was considered. It is deployed to a missile for high maneuverability and fast controllability in the terminal guidance phase. However, it causes more complex aerodynamic jet interactions between the side jet and the supersonic free stream than does the conventional impulse type side jet with a small single thruster. In this paper, a numerical investigation of the jet interference effects for the missile equipped with a continuous type side jet thruster is presented. A three-dimensional flow field was simulated by using a commercial unstructured-based CFD solver. The numerical simulation method was validated through comparison with wind tunnel test results for the single jet. The method of defining jet direction for this type of side jet control to minimize simulation cases was also introduced. Flow fields investigation and jet interaction effects for various flow conditions, jet pressure ratios and defined jet direction conditions were performed. From the numerical simulation for the continuous type side jet, extensive aerodynamic interference data were obtained to construct an aerodynamic coefficients database for precise missile control.

Wind Data Simulation Using Digital Generation of Non-Gaussian Turbulence Multiple Time Series with Specified Sample Cross Correlations (임의의 표본상호상관함수와 비정규확률분포를 갖는 다중 난류시계열의 디지털 합성방법을 이용한 풍속데이터 시뮬레이션)

  • Seong, Seung-Hak;Kim, Wook;Kim, Kyung-Chun;Boo, Jung-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.569-581
    • /
    • 2003
  • A method of synthetic time series generation was developed and applied to the simulation of homogeneous turbulence in a periodic 3 - D box and the hourly wind data simulation. The method can simulate almost exact sample auto and cross correlations of multiple time series and control non-Gaussian distribution. Using the turbulence simulation, influence of correlations, non-Gaussian distribution, and one-direction anisotropy on homogeneous structure were studied by investigating the spatial distribution of turbulence kinetic energy and enstrophy. An hourly wind data of Typhoon Robin was used to illustrate a capability of the method to simulate sample cross correlations of multiple time series. The simulated typhoon data shows a similar shape of fluctuations and almost exactly the same sample auto and cross correlations of the Robin.

Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area (대기 안정도와 지표면 온도가 미세규모 국지 흐름에 미치는 영향: 수문지역을 대상으로)

  • Park, Soo-Jin;Kim, Do-Yong;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.