DOI QR코드

DOI QR Code

Effect of White and Blue Wind Net Shading on the Quality of 'Fuji' and 'Hongro' Apple Fruits

백색 및 청색 방풍망 차광 처리가 '후지', '홍로' 사과 과실의 품질에 미치는 영향

  • 강경진 (충청남도농업기술원 원예연구과) ;
  • 서정학 (충청남도농업기술원 원예연구과) ;
  • 윤홍기 (충청남도농업기술원 원예연구과) ;
  • 서정석 (충청남도농업기술원 원예연구과) ;
  • 주정일 (충청남도농업기술원 원예연구과) ;
  • 천종필 (충남대학교 원예학과)
  • Received : 2020.02.07
  • Accepted : 2020.03.13
  • Published : 2020.04.30

Abstract

In Yesan-gun, Korea's main apple-producing region, the area of apple cultivation and yield are declining. In particular, the worsening quality of fruits due to unusually high temperatures amid recent climate change has also become a major challenge for apple orchards located on flatlands. The objective of this research is to investigate quality changes of apples according to different growing environments, depending on the shade of the sun, by covering the trees with different colors of wind nets. A white and blue wind nets with a hole size of 2 × 2 mm is installed on two experimental trees, 17-year-old 'Fuji' and 'Hongro', which are planted 1.5 m × 3.5 m in the north-south direction. Treatment of wind nets effectively lowered fruit surface temperature regardless of apple variety. When measuring the temperature of the fruit surface at 2 pm, the temperature of the air was 34.8℃, but the 'Fuji' of the untreated blocks was the highest at 40.0℃, while the blue wind net and the white wind net were significantly lower at 34.9℃ and 36.6℃, respectively. In 'Hongro', the results showed that the surface temperature was effectively lowered by recording 38.3℃ for the blue wind net and 38.5℃ for the white wind net treatment when the untreated one was 44.2℃. According to the color difference in 'Fuji', the skin redness (a) was the lowest with untreated control at 16.5, but the blue and white wind net treatment higher at 18.0 and 19.3, respectively. In 'Hongro', the white wind net treated fruit also showed a much higher skin redness than the untreated control of 28.1, showing much higher a of 34.9. Sunburn damage in 'Fuji' apples amounted to 9.4% in untreated control. However, the blue and white wind net treatment revealed to 3.8% and 4.2%, respectively. In 'Hongro', those damage in the fruits treated with blue or white wind net, accounted for only 8.8% and 12.4%, respectively, significantly lower than 28.8% occurrence of untreated one. And, these results were understood to be the result of low UV radiation being blocked by the treatment of wind nets.

본 연구는 '후지/M.9'와 '홍로/M.9'가 재식된 사과원에 바람이나 우박을 막기 위해 사용되는 망(구멍크기 : 2×2mm)을 수관상부에 색상별로 백색과 청색을 나누어 설치한 후 햇빛의 차광정도 및 생육환경 차이 등에 따른 과실품질 변화를 조사하였다. '후지' 사과의 경우 대기온도 34.8℃인 오후 2~3시경의 과실표면 온도를 측정한 결과, 무처리는 40.0℃로 가장 높았고, 청색 방풍망과 백색 방풍망 처리구는 각각 34.9℃, 36.6℃로 크게 낮았다. '홍로'에서는 무처리구가 44.2℃일 때, 청색 방풍망 처리구는 38.3℃, 백색 방풍망 처리구는 38.5℃를 기록하여 '후지'와 마찬가지로 온도 경감효과를 보였다. '후지'의 과피색차를 조사한 결과, 과피적색도(a)는 무처리구가 16.5, 청색 방풍망 처리구는 18.0였으나, 백색 방풍망 처리구는 19.3으로 가장 높은 값을 보였다. '홍로'에서도 백색 방풍망 처리구가 적색도가 34.9로 무처리구 28.1에 비해 유의하게 높은 적색도 발현을 보였다. 일소피해 조사결과, '후지'에서 청색 방풍망 처리구 3.8%, 백색 방풍망 처리구 4.2%로 무처리구 9.4%에 비하여 크게 경감되었고, '홍로'의 경우는 청색 방풍망 처리구는 8.8%, 백색 방풍망 처리구는 12.4%로 무처리구 28.8%에 비하여 일소발생이 현저히 감소하였다. 이 같은 결과는 처리별 자외선 수치를 측정하였을 때 무처리 구간의 자외선 값에 비해 청색 방풍망 처리구에서 유의하게 낮아 방풍망 처리에 의한 자외선 차단 효과에 의한 것을 확인할 수 있었다.

Keywords

References

  1. Arakawa, O., Y. Hori, and R. Ogata. 1985. Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiol. Plant. 64:323-327. https://doi.org/10.1111/j.1399-3054.1985.tb03347.x
  2. Arakawa, O., Y. Hori, and R. Ogata. 1986. Characteristics of development and relationship between anthocyanin synthesis and phenylalanine ammonia-lyase activity in 'Starking Delicious', 'Fuji' and 'Mutsu' apple fruits. J. Japan. Soc. Hort. Sci. 54:424-430. https://doi.org/10.2503/jjshs.54.424
  3. Bae, R.N. and S.K. Lee. 1994. Effects of some postharvest treatment on anthocyanin synthesis and quality and 'Fuji' apples. J. Kor. Soc. Hort. Sci. 35:599-609.
  4. Cho, D.H., J.S. Kim, J.Y. Yoon, S.Y. Choi, and B.S. Choi. 1995. Effect of rain shelter and reflecting film mulching on fruit quality and disease infection in peach. RDA. J. Agri. Sci. 37:456-460.
  5. Chouinard, G., J. Veilleux, F. Pelletier, M. Larose, V. Philion, V. Joubert, and D. Comier. 2019. Impact of exclusion netting row covers on 'Honeycrisp' apple trees grown under northeastern north American conditions: Effects on photosynthesis and fruit quality. Insects 10:214. doi:10.3390/insects10070214.
  6. Felicetti, D.A. and L.E. Schrader. 2008. Photooxidative sunburn of apples: Characterization of a third type of apple sunburn. Int. J. Fruit Sci. 8:160-172. https://doi.org/10.1080/15538360802526472
  7. Glenn, D. M., E. Prado, A. Erez, J. McFerson, and G. J. Puterka. 2002. A reflective, processed-kaolin particle film affects fruit temperature, radiation reflection and solar injury in apple. J. Amer. Soc. Hort. Sci. 127:188-193. https://doi.org/10.21273/jashs.127.2.188
  8. Glenn, D. M. and G. Puterka. 2004. Particle film technology: An overview of history, concepts and impact in horticulture. Acta Hortic. 636:509-511. https://doi.org/10.17660/actahortic.2004.636.63
  9. Hengari, S., K.I. Theron, S.J. Midgley, and W.J. Steyn. 2014. The effect of high UV-B dosage on apple fruit photosystems at different fruit maturity stages. Sci. Hortic. 170:103-114. https://doi.org/10.1016/j.scienta.2014.02.037
  10. Iglesias, I., J, Salvia., L. Torguet, and C. Cabus. 2002. Orchard cooling with overtree microsprinkler irrigation to improve fruit colour and quality of 'Topred Delicious' apples. Sci. Hortic. 93:39-51. https://doi.org/10.1016/S0304-4238(01)00308-9
  11. Johnson, G.N., A.J. Young, J.D. Scholes, and P. Horton. 1993. The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 16:673-679. doi:10.1111/ j.1365-3040.1993.tb00485.x
  12. Kang, K.J., J.H Seo, H.K. Yoon, J.S. Seo, T.Y. Choi, and J.P. Chun. 2019. Effects of wind net shading and sprinkling on growing conditions and fruit quality in 'Hongro' and 'Fuji' apple fruits. Protected Hort. Plant Fac. 28:126-133. https://doi.org/10.12791/KSBEC.2019.28.2.126
  13. Kim S.Y, I.H. Heo, and S.H. Lee. 2010. Impacts of temperature rising on changing of cultivation area of apple in Korea. J. Korean Assoc. Region. Geography. 16:201-215.
  14. Kim, S.E. and K.D. Kwon. 2019. Exports strategies of 'Kolopple' brand in Korea's apples producing cluster-Focused on Andong, Chungju, Geochang and Yesan area -. J. Brand Design Assoc. Korea. 17:41-52. https://doi.org/10.18852/bdak.2019.17.3.41
  15. Kwon, H. J., D.H. Sagong, M.Y. Park, Y.Y. Song, K.H. Chung, J.C. Nam, J.H. Han, and G.R. Do. 2013. Influence of elevated $CO_2$ and air temperature on photosynthesis, shoot growth, and fruit quality of 'Fuji'/M.9 apple tree. Korean J. Agric. For. Meteorol. 15:245-263. Doi:10.5532/KJAFM.2013.15.4.245.
  16. Lee, J.G., Y.J. Kim, and S.H. Jeong. 2010. The climatological regional characteristics of the occurrence of extraordinary temperature events associated with crop cultivation. Korean J. Agric. For. Meteorol. 12:157-172. https://doi.org/10.5532/KJAFM.2010.12.3.157
  17. Leja, M., A. Mareczek, and J. Ben. 2003. Antioxidant properties of two apple cultivars during long-term storage. Food Chem. 80:303-307. https://doi.org/10.1016/S0308-8146(02)00263-7
  18. Lin-Wang, K., D. Micheletti, J. Palmer, R. Volz, L. Lozano, R. Espley, R.P. Hellens, D. Chaqne, D.D. Rowan, M. Troqqio, I. Iglesias, and A.C. Allan. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34:1176-1190. Doi:10.1111/j.1365-3040.2011.02316.x
  19. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescencea practical guide. J. Exp. Bot. 51:659-668. https://doi.org/10.1093/jexbot/51.345.659
  20. Mupambi, G., S. Musacchi, S. Serra, L. Kalcsits, D.R. Layne, and T. Schmidt. 2018. Protective netting improves leaf-level photosynthetic light use efficiency in 'Honeycrisp' apple under heat stress. HortScience. 53:1416-1422. DOI.10.21273/HORTSCI13096-18.
  21. Palmer, J.W., J.P. Prive, and D.S. Tustin. 2003. Temperature. Apples; botany, production and uses, D.C. Ferree and I.J. Warrington (Eds.), CABI Publishing, Cambridge, MA, USA, 217-236.
  22. Park, J.G., S.K. Kim, J.Y. Lee, S.H. Kim, and Y.U. Shin. 2004. Seasonal and daily patterns of xylem sap transportation in 'Fuji'/M.9 apple trees. Kor. J. Hort. Sci. Technol. 22:310-314.
  23. Racsko, J. and L. E. Schrader, 2012. Sunburn of apple fruit: Historical background, recent advances and future perspectives. Critic. Rev. Plant Sci. 31:455-504. https://doi.org/10.1080/07352689.2012.696453
  24. Schrader, L., J. Sun, J. Zhang, D. Felicetti, and J. Tian. 2008. Heat and light-induced apple skin disorders: Causes and prevention. Acta Hortic. 772:51-58. https://doi.org/10.17660/actahortic.2008.772.5
  25. Song, Y.Y., M.Y. Park, S.J. Yang, and D.H. Sagong. 2009: Influence of air temperature during midsummer on fruit sunburn occurrence in 'Fuji'/M9 apple tree. Korean J. Agric. For. Meteorol.11:127-134. https://doi.org/10.5532/KJAFM.2009.11.4.127
  26. Utsunomiya, N. and H. Higuchi. 1996. Effects of irradiance level on the growth and photosynthesis of cherimoya, sugar apple and soursop seedling. Environ. Control in Biol. 34:201-207. https://doi.org/10.2525/ecb1963.34.201
  27. Zhao, C., Mao, K., You, C. X., Zhao, X. Y., Wang, S. H., Li, Y. Y., & Hao, Y. J. (2016). Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple. Plant Sci. 247:115-126. https://doi.org/10.1016/j.plantsci.2016.03.006