Browse > Article
http://dx.doi.org/10.14191/Atmos.2013.23.1.013

Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area  

Park, Soo-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kim, Do-Yong (BK21 Graduate School of Earth Environmental System, Pukyong National University)
Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
Publication Information
Atmosphere / v.23, no.1, 2013 , pp. 13-21 More about this Journal
Abstract
In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.
Keywords
Atmospheric stability; CFD model; microscale local airflow; surface temperature;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 김재진, 백종진, 2005: CFD 모형을 이용한 도시 지역 흐름 및 스칼라 분산 연구. 한국기상학회지, 41, 821-837.
2 신동빈, 이태영, 1989: 한반도 중부 지방에서의 해륙풍 순환에 미치는 지형의 영향. 한국기상학회지, 25, 56-69.
3 이승우, 이동규, 1998: 수도권 지역에서 지표 및 지형 효과에 따른 국지 규모 대기 순환의 수치실험. 한국기상학회지, 34, 1-19.
4 이영수, 김재진, 2011: 도시 지역에서 아파트 단지가 흐름과 확산에 미치는 영향. 대기, 21, 95-108.
5 이재규, 인소라, 2009: 역전층이 영동 지역의 활강풍에 미치는 영향에 관한 민감도 수치실험 연구. 대기, 19, 331-344.
6 이주현, 최재원, 김재진, 서용철, 2009: 도시 재개발이 도시 지역 상세 대기 흐름에 미치는 영향. 한국지리정보학회지, 12, 69-81.
7 장욱, 전혜영, 2008: 봄철 강릉지역에서 발생하는 강풍에 대한 연구. 대기, 18, 207-224.
8 조강표, 홍성일, 조기성, 2006: 3차원 산악지형의 풍속할증영향에 관한 연구. 한국풍공학회지, 10, 241-251.
9 최희욱, 김도용, 김재진, 김기영, 우정헌, 2012: CFD-WRF 접합 모델을 이용한 도시 지역 화재 시나리오별 확산특성 연구. 대기, 22, 47-55.
10 Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667- 1681.   DOI   ScienceOn
11 Castro, I. P. and D. D. Apsley, 1997: Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flow. Atmos. Environ., 31, 893-850.
12 Kim, J.-J. and J.-J. Baik, 2001: Urban street-canyon flows with bottom heating. Atmos. Environ., 35, 3395-3404.   DOI   ScienceOn
13 Kim, J.-J. and J.-J. Baik, 2010: Effects of street-bottom and building-roof heating on flow in three-dimensional street canyon. Adv. Atmos. Sci., 27, 513-527.   DOI   ScienceOn
14 Mahrt, L. and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222-234.   DOI
15 Mohan, M. and T. A. Siddiqui, 1998: Analysis of various schemes for the estimation of atmospheric stability classification. Atmos. Environ., 32, 3775-3781.   DOI   ScienceOn
16 Patankar, S. V., 1980: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 197 pp.
17 Versteeg, H. K. and W. Malalasekera, 1995: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman, Malaysia, 257 pp.
18 Yakhot, V., S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziable, 1992: Development of turbulence models for shear flow by a double expansion technique. Physics of Fluids, 4, 1510-1520.   DOI
19 Zhang, Y. Q., S. P. Arya, and W. H. Snyder, 1996: A comparison of numerical and physical modeling of stable atmospheric flow and dispersion around a cubical building. Atmos. Environ., 30, 1327-1345.   DOI   ScienceOn
20 김용국, 이종범, 1992: 대기안정도와 지형조건에 따른 풍향변동폭의 특성. 한국대기보전학회지, 8, 138-145.
21 김재진, 2007: 장애물 외관비가 주변 흐름에 미치는 영향. 대기, 17, 381-391.