• Title/Summary/Keyword: Control of distortion factor

Search Result 141, Processing Time 0.027 seconds

Scheme to Improve the Line Current Distortion of PFC Using a Predictive Control Algorithm

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1168-1177
    • /
    • 2015
  • This paper presents a scheme to improve the line current distortion of power factor corrector (PFC) topology at the zero crossing point using a predictive control algorithm in both the continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The line current in single-phase PFC topology is distorted at the zero crossing point of the input AC voltage because of the characteristic of the general proportional integral (PI) current controller. This distortion degrades the line current quality, such as the total harmonic distortion (THD) and the power factor (PF). Given the optimal duty cycle calculated by estimating the next state current in both the CCM and DCM, the proposed predictive control algorithm has a fast dynamic response and accuracy unlike the conventional PI current control method. These advantages of the proposed algorithm lower the line current distortion of PFC topology. The proposed method is verified through PSIM simulations and experimental results with 1.5 kW bridgeless PFC (BLPFC) topology.

The Current Control Methods Comparison of Boost Converter for Unity Power Factor (단위 역률 구현을 위한 부스트 컨버터의 전류제어방식 비교)

  • 최재동;성세진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the BPFC(Boost Power Factor Collection) method is proposed to improve power factor and harmonic distortion. This method not only reduces the current and voltage distortion but also the physical size and brings expected high efficiency through current control methods. And the proposed BPFC has a distinct difference by control methods. The BPFC method proposed in this study has the characteristic of the high power factor and low harmonic distortion, and the control method using the peak current control and PWM average current control is comparative.

  • PDF

A Study on the Prediction of Welding Distortion of Vacuum Vessel during Fabrication Process (진공 용기 제작시 공정별 변형 예측에 관한 연구)

  • Lee, Dong-Ju;Kim, Ha-Geun;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.96-96
    • /
    • 2009
  • The purpose of this study is to clarify the transitional behavior and main factor of excessive welding distortion caused by fabrication process of STS 304 vacuum vessel having double curvature for the efficient quality control of vacuum vessel. In order to do it, the predictive equations of the welding distortion in simple weldment of vacuum vessel were established by conventional finite element analysis. And the principal factor controlling the welding distortion was identified by evaluating the welding distortion of vacuum vessel in each fabrication process with FEA and simplified thermo elastic method. Based on the results, the principal factors of distortion of vacuum vessel were clarified as angular distortion and transverse shrinkage which are a source of excessive out-of plane distortion in the double curved vacuum vessel. It was expected that the FE analysis results of this study could contribute to establish the proper control method of welding distortion for double curved vacuum vessel.

  • PDF

A Study on the Control Technology for Global Distortion of the Deck in the Superstructure during Manufacturing Process (선루 제작시 데크의 전 변형 제어에 관한 연구)

  • Kim, Ha-Geun;Shin, Sang-Beom;Kim, Kyung-Gyu
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.64-68
    • /
    • 2010
  • The purpose of this study is to develop the control technology of global distortion in the deck of superstructures during manufacturing processes. The behavior of global distortion in the deck was evaluated by FEA and verified through comparing with the measured results by 3D measuring instrument. It was seen from the results that the principal factor inducing the global distortion is to be the bending moment associated with the longitudinal shrinkage force and transverse shrinkage caused by welding of stiffeners and flame heating to correct the excessive local out-of-plane distortion. Based on the results, the amount of reverse distortion in the thin deck plate was determined to control the global distortion in the deck plate. The proposed distortion control technology was verified by applying it to the actual structure.

Comparative Analysis of Current Controls for Boost PFC Converter under Light Load

  • Juil Kim;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.143-151
    • /
    • 2024
  • In this paper, the inductor current distortion in a boost PFC (Power Factor Correction) converter under light load is mathematically analyzed, and its reasons are defined. In the average current mode control under light load, the inductor current is discontinuous, resulting in an inaccurate inductor current average value being reflected in the current control. In predictive current mode control, the current ripple is relatively large compared to the inductor current, leading to severe current distortion. In addition, the switch is turned off near the peak of the inductor current when model predictive current control is applied. Inductor current distortion must be addressed because it leads to an increase in total harmonic distortion and a decrease in power factor. In this paper, the design procedure to mitigate the light load current distortion in boost PFC converter is selected based on the mathematical analysis. Finally, a comparative analysis of control methods under light load is performed using hardware-in-the-loop simulation.

Enhanced Variable On-time Control of Critical Conduction Mode Boost Power Factor Correction Converters

  • Kim, Jung-Won;Yi, Je-Hyun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.890-898
    • /
    • 2014
  • Critical conduction mode boost power factor correction converters operating at the boundary of continuous conduction mode and discontinuous conduction mode have been widely used for power applications lower than 300W. This paper proposes an enhanced variable on-time control method for the critical conduction mode boost PFC converter to improve the total harmonic distortion characteristic. The inductor current, which varies according to the input voltage, is analyzed in detail and the optimal on-time is obtained to minimize the total harmonic distortion with a digital controller using a TMS320F28335. The switch on-time varies according to the input voltage based on the computed optimal on-time. The performance of the proposed control method is verified by a 100W PFC converter. It is shown that the optimized on-time reduces the total harmonic distortion about 52% (from 10.48% to 5.5%) at 220V when compared to the variable on-time control method.

Suppression of Leakage Current and Distortion in Variable Capacitance Devices and their Application to AC Power Regulators

  • Katsuki, Akihiko;Oki, Takuya
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • The quantity of alternating current (AC) leakage and the value of distortion factor in capacitor currents are discussed with regard to a new power component called variable capacitance device (VCD). This component has terminals for controlling its capacitance. Nonlinear dielectric characteristics are utilized in this device to vary the capacitance. When VCD operates in an AC circuit, the AC leakage from this device through direct current (DC) control voltage source increases according to the conditions of DC control voltage and so on. To solve this problem, we propose techniques for suppressing AC leakage. Although VCD has strong nonlinear characteristics, the current through the capacitor is not distorted significantly. The relations between AC leakage and the distortion in current waveforms are investigated. An application example for an AC power regulator is also introduced to evaluate the distortion in waveforms.

A study of Single-phase Voltage Source PWM Converter for High Power Factor (고역률 제어를 위한 단산 전압원 PWM 컨버터에 관한 연구)

  • 류성식;손진근;정을기;김형원;전희종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.362-365
    • /
    • 1999
  • In this paper, the method of reducing harmonics and correcting of power factor in single PWM converter associated with diode rectifier and boos converter is studied. The ac-dc converter in which the harmonic distortion in the input current is reduced using a third harmonic injected PWM is proposed. A lower switching power loss and easy configuration o control circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[KHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

REDUCTION OF VOLTAGE STRESS AND INPUT CURRENT HARMONIC DISTORTION IN SINGLE STAGE PFC CONVERTER BY SELECTIVE VARIABLE FREQUENCY CONTROL (선택적 주파수 변환방식에 의한 단상 역률보상회로의 캐패시터전압 및 입력전류 고조파왜곡의 감소)

  • Choi, Hang-Seok;Lee, Kyu-Chan;Cho, Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1999-2001
    • /
    • 1997
  • The main two drawbacks of the Sin91e Stage PFC (SS-PFC) converters employing a DCM Boost PFC cell are relatively high voltage stress on the bulk capacitor and the input current harmonic distortion. The high voltage stress on bulk capacitor makes the SS-PFC converter impractical in a universal input application and the input current harmonic distortion lowers power factor. In this paper a selective variable frequency control that reduces the voltage stress on the bulk capacitor and the input current harmonic distortion is proposed. Computer simulation results of the proposed control method are presented.

  • PDF

A Pulse Frequency Control of Single-switch Three-phase ZCS Buck Rectifiers (단일 스위치 3상 ZCS 강압형 정류기의 펄스 주파수 제어)

  • 송중호;김용덕;이동윤;최익;최주엽;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.82-90
    • /
    • 1999
  • A pulse frequency control method for single-switch three-phase buck rectifiers is comprehensively studied in this paper. The proposed pulse frequency control method leads the three-phase buck rectifier to a high performance system that can draw the nearly sinusoidal input-line currents. The simulated and experimental results demonstrate that the system provides low total harmonic distortion of the input-line currents, high-power factor, and good output voltage regulation against load change.