• Title/Summary/Keyword: Control and monitoring software

Search Result 368, Processing Time 0.033 seconds

Implementation of Ubiquitous Application based on Context-Awareness (상황 인식 기반의 유비쿼터스 어플리케이션 구현)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.744-751
    • /
    • 2008
  • Ubiquitous computing is a new paradigm of telecommunication technology and is embedded with advanced computing technology to process a large amount of data in a normal environment. Generally, ail equipment is embedded with sensors and operating devices to interaction with communication functions. That is why ubiquitous computing must be able to access any devices anywhere at anytime in order to perform appropriate functions. Unfortunately, however, it is difficult to make an optimized design for applications which can effectively interaction with various functions in distributed environment like ubiquitous computing. Therefore, this paper is aimed at deploying interface with server nodules and virtual prototyping by utilizing LabVIEW and embedded application software with additional network function. In addition, given information about sensors collected from context-awareness and location-awareness, it will suggest the ideal ubiquitous application based on context-awareness and apply the advanced application to device control and monitoring through context awareness of lab.

Development of Secure Entrance System using AOP and Design Pattern (관점지향 소프트웨어 개발 방법론과 디자인 패턴을 적용한 출입 보안 시스템 개발)

  • Kim, Tae-Ho;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.943-950
    • /
    • 2010
  • A secure entrance system is complicated because it should have various functions like monitoring, logging, tracing, authentication, authorization, staff locating, managing staff enter-and-leave, and gate control. In this paper, we built and applied a secure entrance system for a domestic nuclear plant using Aspect Oriented Programming(AOP) and design pattern. Using AOP has an advantage of clearly distinguishing the role for each functional module because building a system separated independently from the system's business logic and security logic is possible. It can manage system alternation flexibility by frequent change of external environment, building a more flexible system based on increased code reuse, efficient functioning is possible which is an original advantage of AOP. Using design pattern enables to design by structuring the complicated problems that arise in general software development. Therefore, the safety of the system can also be guaranteed.

The Development of Object Tracking System Using C2H and Nios II Embedded Processor (Nios II 임배디드 프로세서 및 C2H를 이용한 무인 자동객체추적 시스템 개발)

  • Jung, Yong-Bae;Kim, Dong-Jin;Park, Young-Seak;Kim, Tea-Hyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.580-585
    • /
    • 2010
  • In this paper, The object Tracking System is designed by SOPC based Nios II embedded processor and C2H compiler. And this system using single PTZ camera can effectively control IPs in the platform of SOPC based Nios II Embedded Processor and creating IP by C2H(C-To-Hardware) compiler for image-in/output, image-processing and devices of communication that can supply various monitoring information to network or serial. Accordingly, Special quality and processing speed of object tracking using high-quality algorism in the system is improved by hardware/software programming methods.

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

Web based Customer Power Demand Variation Estimation System using LSTM (LSTM을 이용한 웹기반 수용가별 전력수요 변동성 평가시스템)

  • Seo, Duck Hee;Lyu, Joonsoo;Choi, Eun Jeong;Cho, Soohwan;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.587-594
    • /
    • 2018
  • The purpose of this study is to propose a power demand volatility evaluation system based on LSTM and not to verify the accuracy of the demand module which is a core module, but to recognize the sudden change of power pattern by using deeplearning in the actual power demand monitoring system. Then we confirm the availability of the module. Also, we tried to provide a visualized report so that the manager can determine the fluctuation of the power usage patten by applying it as a module to the web based system. It is confirmed that the power consumption data shows a certain pattern in the case of government offices and hospitals as a result of implementation of the volatility evaluation system. On the other hand, in areas with relatively low power consumption, such as residential facilities, it was not appropriate to evaluate the volatility.

A study on liquid crystal-based electrical polarization control technology for polarized image monitoring device (편광 영상감시 장치를 위한 액정 기반 전기적 편광 조절 기술 연구)

  • Ahn, Hyeon-Sik;Lim, Seong-Min;Jang, Eun-Jeong;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.416-421
    • /
    • 2022
  • In this study, we present a fully automated system that combines camera technology with liquid crystal technology to create a polarization camera capable of detecting the partial linear polarization of light reflected from an object. The use of twisted nematic (TN) liquid crystals that electro-optically modulate the polarization plane of light eliminates the need to mechanically rotate the polarizing filter in front of the camera lens. Images obtained using these techniques are imaged by computer software. In addition, liquid crystal panels have been produced in a square shape, but many camera lenses are usually round, and lighting or other driving units are installed around the lens, so space is optimized through the application of a circular liquid crystal display. Through the development of this technology, an electrically switchable and space-optimized liquid crystal polarizer is developed.

Development of a Moving Monitor System for Growing Crops and Environmental Information in Green House (시설하우스 이동형 환경 및 생장 모니터링 시스템 개발)

  • Kim, Ho-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • In rural area, our farmers confront decreasing benefits owing to imported crops and increased cost. Recently, the government encourage the 6th Industry that merges farming, rural resources, and information and communication technology. Therefor the government makes an investment in supplying 'smart greenhouse' in which a farmer monitor growing crops and environment information to control growing condition. The objective of this study is developing an Moving Monitor and Control System for crops in green House. This system includes a movable sensing unit, a controlling unit, and a server PC unit. The movable sensing unit contains high resolution IP camera, temperature and humidity sensor and WiFi repeater. It rolls on a rail hanging beneath the ceiling of a green house. The controlling unit contains embedded PC, PLC module, WiFi router, and BLDC motor to drive the movable sensing unit. And the server PC unit contains a integrated farm management software and home pages and databases in which the images of crops and environment informations. The movable sensing unit moves widely in a green house and gathers lots of information. The server saves these informations and provides them to customers with the direct commercing web page. This system will help farmers to control house environment and sales their crops in online market. Eventually It will be helpful for farmers to increase their benefits.

Endpoint Detection in Semiconductor Etch Process Using OPM Sensor

  • Arshad, Zeeshan;Choi, Somang;Jang, Boen;Hong, Sang Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.237.1-237.1
    • /
    • 2014
  • Etching is one of the most important steps in semiconductor manufacturing. In etch process control a critical task is to stop the etch process when the layer to be etched has been removed. If the etch process is allowed to continue beyond this time, the material gets over-etched and the lower layer is partially removed. On the other hand if the etch process is stopped too early, part of the layer to be etched still remains, called under-etched. Endpoint detection (EPD) is used to detect the most accurate time to stop the etch process in order to avoid over or under etch. The goal of this research is to develop a hardware and software system for EPD. The hardware consists of an Optical Plasma Monitor (OPM) sensor which is used to continuously monitor the plasma optical emission intensity during the etch process. The OPM software was developed to acquire and analyze the data to perform EPD. Our EPD algorithm is based on the following theory. As the etch process starts the plasma generated in the vacuum is added with the by-products from the etch reactions on the layer being etched. As the endpoint reaches and the layer gets completely removed the plasma constituents change gradually changing the optical intensity of the plasma. Although the change in optical intensity is not apparent, the difference in the plasma constituents when the endpoint has reached leaves a unique signature in the data gathered. Though not detectable in time domain, this signature could be obscured in the frequency spectrum of the data. By filtering and analysis of the changes in the frequency spectrum before and after the endpoint we could extract this signature. In order to do that, first, the EPD algorithm converts the time series signal into frequency domain. Next the noise in the frequency spectrum is removed to look for the useful frequency constituents of the data. Once these useful frequencies have been selected, they are monitored continuously in time and using a sub-algorithm the endpoint is detected when significant changes are observed in those signals. The experiment consisted of three kinds of etch processes; ashing, SiO2 on Si etch and metal on Si etch to develop and evaluate the EPD system.

  • PDF

A Design and Implementation of Busbar Joint and Temperature Measurement System (부스바 접촉 상태 및 온도 감지 시스템 설계 및 구현)

  • Lee, Young-dong;Jeong, Sung-Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.379-385
    • /
    • 2017
  • In general, distribution board, panel board and motor control center can be installed over a wide area such as residence of group, building, schools, factories, ports, airports, water service and sewerage, substation and heavy industries that are used to supply converts the voltages extra high voltage into optimal voltage. There are electrical accidents due to rise of contact temperature, loose contact between busbar, deterioration of the contact resistance, over temperature of the busbars. In this paper, we designed and implemented the busbar joint and temperature measurement system, which can measure the joint resistance of busbar and loose connection between busbar using potentiometer and non-contact infrared sensor. The experimental results show that tightening the bolt and nut is fully engaged, resistance was decreased and maximum error range was 0.1mm. Also, the experimental result showed that the temperature at the contact area is increased from $27.3^{\circ}C$ to $69.3^{\circ}C$by the contact resistance.

Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph (무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축)

  • Cho, Seong-Jun;Bang, Eun-Seok;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • We have verified applicability of UAV(Unmanned Aerial Vehicle) photogrammetry to a mining engineering. The test mine is a smectite mine located at Gyeongju city in Gyeongnam province, Koera. 448 photos over area of $600m{\times}380m$ were taken with overlapped manner using Cannon Mark VI equipped to multicopter DJI S1000, which were processed with AgiSoft Photoscan software to generate orthophoto and DEM model of the study area. photogrammetry data with 10 cm resolution were generated using 6 ground control positions, which were exported to the 3D geological modeling software to make a topographic surface object. Monitoring of amount of ore production and landsliding could be done with less than 1 hours photographing as well as low cost. A direct link between UAV photogrammetry and 3D geological modeling technology might increase productivity of a mine due to appling the topographical surface change immediately according to the mining operation.