DOI QR코드

DOI QR Code

A study on liquid crystal-based electrical polarization control technology for polarized image monitoring device

편광 영상감시 장치를 위한 액정 기반 전기적 편광 조절 기술 연구

  • Ahn, Hyeon-Sik (Department of Electronic Engineering, Hanbat National University) ;
  • Lim, Seong-Min (Department of Electronic Engineering, Hanbat National University) ;
  • Jang, Eun-Jeong (Department of Electronic Engineering, Hanbat National University) ;
  • Choi, Yoonseuk (Department of Electronic Engineering, Hanbat National University)
  • Received : 2022.09.05
  • Accepted : 2022.09.21
  • Published : 2022.09.30

Abstract

In this study, we present a fully automated system that combines camera technology with liquid crystal technology to create a polarization camera capable of detecting the partial linear polarization of light reflected from an object. The use of twisted nematic (TN) liquid crystals that electro-optically modulate the polarization plane of light eliminates the need to mechanically rotate the polarizing filter in front of the camera lens. Images obtained using these techniques are imaged by computer software. In addition, liquid crystal panels have been produced in a square shape, but many camera lenses are usually round, and lighting or other driving units are installed around the lens, so space is optimized through the application of a circular liquid crystal display. Through the development of this technology, an electrically switchable and space-optimized liquid crystal polarizer is developed.

본 연구에서는 영상감시 장치에 액정 기반 편광 제어 기술을 결합하여 피사체에서 반사된 빛의 부분 선형 편광을 제거할 수 있는 편광 영상감치 장치 시스템을 제안한다. 빛의 편광 방향을 전기 광학적으로 변조하는 TN(Twisted Nematic) 액정을 사용하면 카메라 렌즈 앞에서 편광 필터를 기계적으로 회전할 필요가 없다. 이러한 기술을 사용하여 얻은 여러 편광 이미지는 컴퓨터 소프트웨어에 의해 이미지화된다. 또한 액정 패널은 사각형 형태로 생산되어 왔으나 대부분의 카메라 렌즈는 일반적으로 원형이고 렌즈 주변에 조명이나 기타 구동 장치가 설치되어 있어 원형 액정 패널을 적용하여 공간을 최적화하였다. 이 기술의 개발을 통해 전기적으로 전환 가능하고 공간에 최적화된 액정 편광 패널이 개발되었다.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the NRF funded by the Ministry of Education (No.2018R1A6A1A03026005) and NRF grant funded by the Korea government (MSIT) (2021R1A2C2011560).

References

  1. K. Nishimura, M. Weaver, "Design and performance of the ePix camera system," AIP Conf Proc., vol.1741, no.1, pp.040047, 2016. DOI: 10.1063/1.4952919
  2. M. Mathieu, D. Quirt, "Alteration mapping on drill cores using a HySpex SWIR-320m hyperspectral camera: Application to the exploration of an unconformity-related uranium deposit," J Geochem Explor., vol.172, pp.71-88, 2017. DOI: 10.1016/j.gexplo.2016.09.008
  3. B. Bolkhovsky, K. Chon, "Statistical analysis of heart rate and heart rate variability monitoring through the use of smart phone cameras," Conf Proc IEEE Eng Med Biol Soc., pp.1610-1613, 2012. DOI: 10.1109/EMBC.2012.6346253
  4. S. Jo, S. Choi, "High resolution three-dimensional flash LIDAR system using a polarization modulating Pockels cell and a micro-polarizer CCD camera," Opt Express., vol.24, no.26, pp.A1580-A1585, 2016. DOI: 10.1364/OE.24.0A1580
  5. Z. Zhu, X. Wang, Q. Liu, F. Zhang, "Camera calibration method based on optimal polarization angle," Opt. Lasers. Eng., vol.112, pp.128-135, 2019. DOI: 10.1016/j.optlaseng.2018.09.009
  6. J. Qi, D. S. Elson, "Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging," Biomed Opt Express., vol.8, no.11, pp.4933-4946, 2017. DOI: 10.1364/BOE.8.004933
  7. C. Lane, "Optical characterization method for birefringent fluids using a polarization camera," Opt. Lasers. Eng., vol.146, pp.106724, 2021. DOI: 10.1016/j.optlaseng.2021.106724