• 제목/요약/키워드: Control System Analysis

검색결과 9,967건 처리시간 0.048초

HAUSAT-2의 궤도 열해석과 열제어계의 예비설계 (THE ORBITAL THERMAL ANALYSIS OF HAUSAT-2 AND ITS THERMAL CONTROL SUBSYSTEM PRELIMINARY DESIGN)

  • 이미현;김동운;장영근
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2005년도 한국우주과학회보 제14권1호
    • /
    • pp.129-132
    • /
    • 2005
  • 본 논문에서는 HAUSAT-2의 궤도 열 해석과 열 제어계의 예비설계를 살펴본다. HAUSAT-2의 열 제어계를 설계하기 위해서 우선 열 제어의 기본 이론 및 열 평형 방정식을 바탕으로 능동 및 수동의 각종 열 제어 방법을 고려하여 HAUSAT-2에 적합한 열 제어 방법 및 재질을 선정하였다(Karam 1998). 또한, 예상궤도인 고도 650km, 경사각 $98^{\circ}$의 태양동기궤도에서 HAUSAT-2가 처해지는 열 환경에 대한 분석 및 위성체의 각 면에 가해지는 은도 분포 및 범위를 예측하여 이를 바탕으로 열 제어계를 설계하였다. 열 해석은 기본적으로 시스템레벨의 해석, 부품레벨의 해석, 보드레벨의 해석 차순으로 진행되었으며, 현재 HAUSAT-2의 열 해석은 발열이 비교적 많은 보드의 해석까지 진행된 상태이며, 이러한 열 해석을 통해서 얻은 결과는 요구조건을 만족하지 못하는 부분에 대해 설계 변경 등을 통해서 모든 부품이 허용온도 범위를 유지하도록 HAUSAT-2의 열 제어계를 설계하였다. 향후 구조-열 모델(STM; Structure & Thermal Model)을 제작한 후 열 진공시험을 통해 열 해석 결과에 대한 검증을 수행할 것이다.

  • PDF

Stability Analysis and Design of a Nonlinear Neuromuscular Control System of a Myoelectric Prosthetic Hand

  • Pak, Pyong-Sik;Okuno, Ryuhei;Akazawa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1489-1494
    • /
    • 2003
  • A neuromuscular control system of a myoelectric prosthetic hand (PH) constitutes a nonlinear system with a dead zone whose magnitude is equal to its joint angle when the PH just grasps an object. This is because the neuromuscular control system remains an open-loop system until the PH grasps the object but it constitutes a feedback control system after the PH griped the object in which a torque induced in the fingers of the PH is fed back. To improve the transient performance of the control system, it is desirable to make the feed-forward gain as large as possible, so long as the stability of the system is not impaired. It is also desired that the control system remains stable even when the PH lifts a heavy or rigid object, because this makes the closed loop gain large and leads to the closed system unstable. According to the theory of stability analysis of nonlinear systems, we can only know the sufficient conditions that the system should be stable. Thus the nonlinear theory on stability is insufficient to be used to design the neuromuscular control system for improving its transient responses. This paper shows that the nonlinear system with a dead zone can be approximated to a linear feedback system and that well-known methods of analysis and design on linear control systems can be applicable. It is also shown through various simulation results that errors induced by approximation are practically negligible and thus the design methods are quite accurate.

  • PDF

초정밀 유정압 베어링 이송 테이블의 나노미터 위치결정 제어에 관한 연구 (On Nanometer Positioning Control of Ultra-precision Hydrostatic Bearing Guided Feeding Table)

  • 심종엽;박천홍;송창규
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1313-1320
    • /
    • 2013
  • An ultraprecision multi-axis machine tool has been designed and developed in our laboratory. The machine tool has four moving axes which are composed of three linear axes and one rotational axis. It has a gantry type structure and the Z-axis is on the X-axis and the C-axis, on which a workpiece is located, is inside the Y-axis. This paper shows control performance improving method and procedure for the ultra-precision positioning control of a hydrostatic bearing guided linear axis. Through improvements of electrical and mechanical components for the control system such as control electronics and oil pumping systems, the control disturbing noise is decreased. Also by the frequency domain analysis of control system those problem-making system components are identified and modified with analytical methods. The controller is analyzed and designed from frequency domain data and system information. In the experimental control results the nanometer order control result is successfully presented.

Useful Control Equations for Practitioners on Dynamic Process Control

  • Suzuki, Tomomichi;Ojima, Yoshikazu
    • International Journal of Quality Innovation
    • /
    • 제3권2호
    • /
    • pp.174-182
    • /
    • 2002
  • System identification and controller formulation are essential in dynamic process control. In system identification, data for system identification are obtained, and then they are analyzed so that the system model of the process is built, identified, and diagnosed. In controller formulation, the control equation is derived based on the result of the system identification. There has been much theoretical research on system identification and controller formulation. These theories are very useful when they are appropriately applied. To our regret, however, these theories are not always effectively applied in practice because the engineers and the operators who manage the process often do not have the necessary understanding of required time series analysis methods. On the other hand, because of widespread use of statistical packages, system identification such as estimating ARMA models can be done with little understanding of time series analysis methods. Therefore, it might be said that the most theoretically difficult part in practice is the controller formulation. In this paper, lists of control equations are proposed as a useful tool for practitioners to use. The tool supports bridging the gap between theory and practice in dynamic process control. Also, for some models, the generalized control equations are obtained.

Use Case를 활용한 열차제어시스템의 ATS기능 분석 (An Analysis of ATS(Automatic Train Supervision) Functions in the Train Control System using Use Case)

  • 윤용기;홍진기;김용규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.180-182
    • /
    • 2009
  • As a train control system becomes a large scale and complex, it is necessary to control rigorously the system requirements specification of the train control system at the early phase. This paper describes Use Cases and activity diagrams of ATS functions requirements in the train control system. Basic functions of the train control system refers to IEC 62290-land are suggested. And the basic functions includes train operation without a driver. It is anticipated that this paper will be helpful for the analysis of ATS functions, ATO functions and EI function in the train control system.

  • PDF

Power System Sensitivity Analysis for Probabilistic Small Signal Stability Assessment in a Deregulated Environment

  • Dong Zhao Yang;Pang Chee Khiang;Zhang Pei
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.355-362
    • /
    • 2005
  • Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

An overview of decentralized optimal fault-tolerant supervisory control systems

  • Cho, K.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.358-361
    • /
    • 1996
  • In this paper, we discuss decentralized optimal fault tolerant supervisory control issues on the basis of failure analysis and diagnosis from the angle of discrete event dynamic system. We address the detectability and the observability problems, and develope fault tolerant supervisory control system upon the failure analysis and diagnosis schemes. A complete min-cut is introduced and the procedure for finding the achievable or nonachievable layered optimal legal sublanguages is suggested for a preferential option among the reachable states in the controlled plant. A layered optimal supervisory control framework is proposed upon these. We extend the concept of decentralized supervisory control by considering the problem of combination of decentralized with centralized control in case pure decentralized control happens to be inadequate. We introduce the concept of locally controllable pair and present a hybrid decentralized supervisory control framework. Finally, we propose the analytical framework for a decentralized optimal fault tolerant supervisory control systems.

  • PDF

지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석 (The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck)

  • 오주영;이근호;송창섭
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.

자기 시스템의 해석과 설계 (Design and Analysis of Electromagnetic System)

  • 박성욱;오진훈;윤시섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.520-522
    • /
    • 2005
  • This paper presents the design and analysis of the electromagnetic system such as jumping ring system. Also, we study the characteristics of dynamics for system with initial parameter. For the propose of system control,, first, we simulate the MATLAB tool solving coupled differential equations with electric parameter, inductance and mutual inductances. Therefore, we design a jumping ring system using design results, implement, and analyze the jumping ring system real situation. For the near time, we present a control process, and compare of real system and software technique.

  • PDF