• Title/Summary/Keyword: Control Spillover

Search Result 30, Processing Time 0.024 seconds

Spillover Suppression in a Flexible Structure using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버억제)

  • Park, Un-Sik;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.499-504
    • /
    • 2000
  • Since large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional system, they have to be modeled into large finite-dimensional systems for control system design. Besides, there are fundamental problems in active vibration control of the large flexible structures. For example, a modeled large finite-dimensional system must be controlled with a much smaller dimensional controller. This causes the spillover phenomenon which degrades the control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we proposed a novel control method for spillover suppression in the control of large flexible structures by using eigenstructure assignment. Its effectiveness in spillover suppression is investigated and verified by the numerical experiments using an example of the simply supported flexible beam which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

A Spillover Suppression Method in a Flexible Structure Using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버 억제방법)

  • Park, Jae-Weon;Park, Un-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.955-962
    • /
    • 2000
  • Although large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional systems, they have to be modeled into a lumped parameter and large finite-dimensional system for control system design. Besides, there remains the fundamental problem that the modeled large finite-dimensional system must be controled with a much smaller dimensional controller due to the limitation of computing resources. This causes the spillover phenomenon which degrades control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we propose a novel spillover suppression method in the active vibration control of large flexible structures by using eigenstructure assignment. Its validity and effectiveness are investigated and verified by the numerical experiments using a simply supported flexible beam, which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

Active Vibration Control of A Cantilever Beam Using $H_2$ Controllers ($H_2$ 제어기를 이용한 외팔보의 능동 진동 제어)

  • Choi, Soo-Young;Jung, Joon-Hong;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.401-409
    • /
    • 2003
  • This paper describes the design and the performance analysis of an $H_2$ controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability. The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

Active Vibration Control of A Cantilever Beam Using Ha Controllers (H₂제어기를 이용한 외팔보의 능동 진동 제어)

  • Choe, Su Yeong;Jeong, Jun Hong;Park, Gi Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.401-401
    • /
    • 2003
  • This paper describes the design and the performance analysis of an Ha controller for noncollocated active vibrating systems. An experiment for the active vibration control of a flexible structure is performed. The experimental model used is a cantilever beam controlled by an active damping system consisting of a laser sensor and an electromagnetic actuator. The $H_2$ controller design is based on the reduced order model and the designed system is capable of attenuating vibration without causing spillover instability, The design procedure to prevent spillover instability is described via the sensitivity analysis. The performances of the controller are verified by experimental results.

Spillover Effects Study of US Import Refusals on ASEAN Countries' Fishery Products (미국의 대 아세안 수산물 수입거부조치 파급효과 연구)

  • Li, Ping;Kim, Hag-Min
    • Korea Trade Review
    • /
    • v.44 no.2
    • /
    • pp.109-126
    • /
    • 2019
  • Import refusals can be considered a new method of non-tariff barriers. This study aims to analyze reputation spillover effects on fish and fishery products imported from ASEAN countries to the U.S. FDA. The supply of aquatic products is not stable due to various factors such as reduction of fish stocks and climate change. Fish is a basic food ingested directly, but there are many ways to control the safety of aquatic products. ASEAN countries account for about 20% of U.S.imports in fish and fishery products. For Southeast Asian countries, fish and fishery products comprise a high proportion of exports revenue. Despite the large share of exports to the U.S., Southeast Asia countries have been receiving many import refusals from the United States. In this study, a theoretical model for examining import refusals is suggested using the negative binomial counting process. The reputation spillover effect, was divided into two spillover effects of 'neighbor reputation' and 'sector reputation'. Results show that there exists a neighbor reputation spillover effect. It can be said if there was a import refusal of the same product from neighboring countries in the preceding year, the home country have a possibility to experience import refusals of the same product. Therefore, it is interpreted that neighboring countries have good standard compliance can help home countries to effectively reach the target markets. Our findings have a important policy implication for ASEAN exporters of fish and fishery products.

Optimal Vibration Control Experiments of Composite Plates Using Piezoelectric Sensor/Actuator (압전 감지기/작동기를 이용한 복합재 평판의 최적 진동제어 실험)

  • Rew, Keun-Ho;Han, Jae-Hung;Lee, In
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.161-168
    • /
    • 1997
  • The present paper describes the vibration control experiment of composite plates with bonded piezoelectric sensor and actuator. The system is modeled as two degree-of-freedom system using modal coordinates and the system parameters are obtained from vibration tests. Kalman filter is adopted for extracting modal coordinates from sensor signal, and control algorithms applied to the system are Linear Quadratic Gaussian(LQG) control, Bang-Bang Control (BBC), Negative Velocity Feedback(NVF), Proportional Derivative Control(PDC). From observation of the spillover and control perfomance, it is concluded that a higher order control algorithm such as LQG rather than BBG, NVF, PDC is suitable for efficient simultaneous control of both bending and twisting modes of composite plates.

  • PDF

Non-spillover control design of tall buildings in modal space

  • Fang, J.Q.;Li, Q.S.;Liu, D.K.
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.189-200
    • /
    • 1999
  • In this paper, a new algorithm for active control design of structures is proposed and investigated. The algorithm preserves the decoupling property of the modal vibration equation and eliminates the spillover problem, which is the main shortcoming in the independent modal space control(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic Riccati equation and the optimal actuator control force are obtained, and the control design procedure is significantly simplified. A numerical example for the control design of a tall building subjected to wind loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and displacement responses of tall buildings under wind actions.

H2 Design for Active Vibration Control of a Cantilever Beam

  • Park, Sooyoung;Joonhong Jung;Park, Kiheon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.59.6-59
    • /
    • 2002
  • $\textbullet$ An experiment for the active vibration control of a cantilever beam is performed. $\textbullet$ An active damping system consisting of a laser sensor and an electromagnetic actuator. $\textbullet$ The design procedure and the performance analysis of an H2 controller for non-collocated systems. $\textbullet$ Simulations and experiments are performed to verify the performances of the controller. $\textbullet$ The optimal H2 controller is designed based on a reduced order model. $\textbullet$The Sensitivity function is introduced to analyze the Spillover phenomenon. $\textbullet$ Active vibration control, Cantilever beam, H2 controller, spillover, Non-collocated system.

  • PDF

SUBOPTIMAL VIBRATION CONTROL OF FLEXIBLE ROBOT BEARING SYSTEM BY USING A MAGNETIC BEARING

  • Lee, Chong-Won;Kim, Jong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.255-259
    • /
    • 1989
  • A suboptimal output feedback controller is designed and applied to a flexible rotor bearing system in order to control the unstable or lilghtly damped vibrations. The reduced order model is the truncated modal equation of the distributed parameter system obtained through the singular perturbation. The instability problem arising from the spillover effects caused by the uncontrolled high frequency modes is prevented through the constrained optimization by incorporating the spillover term into the performance index. The efficiency of the proposed method is demonstrated experimentally with a flexible rotor by using a magnetic bearing.

  • PDF

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.