• Title/Summary/Keyword: Control Rod

Search Result 557, Processing Time 0.022 seconds

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

APPLICATION OF BACKWARD DIFFERENTIATION FORMULA TO SPATIAL REACTOR KINETICS CALCULATION WITH ADAPTIVE TIME STEP CONTROL

  • Shim, Cheon-Bo;Jung, Yeon-Sang;Yoon, Joo-Il;Joo, Han-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.531-546
    • /
    • 2011
  • The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation is used for an efficient implementation of the BDF method that does not require excessive memory to store old information from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution fidelity.

Neutronic analysis of control rod effect on safety parameters in Tehran Research Reactor

  • Torabi, Mina;Lashkari, A.;Masoudi, Seyed Farhad;Bagheri, Somayeh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1017-1023
    • /
    • 2018
  • The measurement and calculation of neutronic parameters in nuclear research reactors has an important influence on control and safety of the nuclear reactor. The power peaking factors, reactivity coefficients and kinetic parameters are the most important neutronic parameter for determining the state of the reactor. The position of the control shim safety rods in the core configuration affects these parameters. The main purpose of this work is to use the MTR_PC package to evaluate the effect of the partially insertion of the control rod on the neutronic parameters at the operating core of the Tehran Research Reactor. The simulation results show that by increasing the insertion of control rods (bank) in the core, the absolute values of power peaking factor, reactivity coefficients and effective delayed neutron fraction increased and only prompt neutron life time decreased. In addition, the results show that the changes of moderator temperature coefficients value versus the control rods positions are very significant. The average value of moderator temperature coefficients increase about 98% in the range of 0-70% insertion of control rods.

Identification of Motion Platform Using the Signal Compression Method with Pre-Processor and Its Application to Siding Mode Control

  • Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1379-1394
    • /
    • 2002
  • In case of a single input single output (SISO) system with a nonlinear term, a signal compression method is useful to identify a system because the equivalent impulse response of linear part from the system can be extracted by the method. However even though the signal compression method is useful to estimate uncertain parameters of the system, the method cannot be directly applied to a unique system with hysteresis characteristics because it cannot estimate all of the two different dynamic properties according to its motion direction. This paper proposes a signal compression method with a pre-processor to identify a unique system with two different dynamics according to its motion direction. The pre-processor plays a role of separating expansion and retraction properties from the system with hysteresis characteristics. For evaluating performance of the proposed approach, a simulation to estimate the assumed unknown parameters for an arbitrary known model is carried out. A motion platform with several single-rod cylinders is a representative unique system with two different dynamics, because each single-rod cylinder has expansion and retraction dynamic properties according to its motion direction. The nominal constant parameters of the motion platform are experimentally identified by using the proposed method. As its application, the identified parameters are applied to a design of a sliding mode controller for the simulator.

A Study on the Handling Performances of a Large-Sized Bus with the Change of Rear Suspension Geometry (후륜 현가장치 지오메트리 변화에 따른 대형 버스의 조종 안정성 연구)

  • 서권희;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.176-183
    • /
    • 2001
  • It is difficult to find out the kinematic characteristics of a vehicle suspension without the usage of CAE software. The application of CAE software into suspension kinematics and dynamics yields the more precise knowledge on the chassis design. In this study, the influence of the suspension geometry on the handling performances of a large-sized bus is investigated using the DADS software. The front and rear suspension of a large-sized bus are a rigid axle suspension with the four control links. The elastokinematic analysis is performed to evaluate the roll characteristics of the front and rear suspension. The elastokinematic responses are evaluated in terms of the roll center height and roll steer for various geometric parameters. The roll center height is mainly dependent on the vertical displacement of a panhard rod and the vertical displacements of lower control links affect the roll steer of a rear suspension. The parameter study with the change of rear suspension geometry is conducted to investigate the vehicle handling performances. This parameter study shows that the vertical displacement and orientation of a panhard rod influence the handling performances of a large-sized bus significantly.

  • PDF

Neutronic assessment of BDBA scenario at the end of Isfahan MNSR core life

  • Ahmadi, M.;Pirouzmand, A.;Rabiee, A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1037-1042
    • /
    • 2018
  • The present study aims to assess the excess induced reactivity in a Miniature Neutron Source Reactor (MNSR) for a Beyond Design Basis Accident (BDBA) scenario. The BDBA scenario as defined in the Safety Analysis Report (SAR) of the reactor involves sticking of the control rod and filling of the inner and outer irradiation sites with water. At the end of the MNSR core life, 10.95 cm of Beryllium is added to the top of the core as a reflector which affects some neutronic parameters such as effective delayed neutrons fraction (${\beta}_{eff}$), the reactivity worth of inner and outer irradiation sites that are filled with water and the reactivity worth of the control rod. Given those influences and changes, new neutronic calculations are required to be able to demonstrate the reactor safety. Therefore, a validated MCNPX model is used to calculate all neutronic parameters at the end of the reactor core life. The calculations show that the induced reactivity in the BDBA scenario increases at the end of core life to $7.90{\pm}0.01mk$ which is significantly higher than the induced reactivity of 6.80 mk given in the SAR of MNSR for the same scenario but at the beginning of the core's life. Also this value is 3.90 mk higher than the maximum allowable operational limit (i.e. 4.00 mk).

Dynamic rod worth measurement method based on eqilibrium-kinetics status

  • Lee, Eun-Ki;Jo, YuGwon;Lee, Hwan-Soo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.781-789
    • /
    • 2022
  • KHNP had licensed Dynamic Control rod Reactivity Measurement (DCRM) method using detector current signals of PWRs in 2006. The method has been applied to all PWRs in Korea for about 15 years successfully. However, the original method was inapplicable to PWRs using low-sensitivity integral fission chamber as ex-core detectors because of their pulse pile-up and the nonlinearity of the mean-square voltage at low power region. Therefore, to overcome this disadvantage, a modified method, DCRM-EK, was developed using kinetics behavior after equilibrium condition where the pulse counts maintain the maximum value before pulse pile-up. Overall measurement, analysis procedure, and related computer codes were changed slightly to reflect the site test condition. The new method was applied to a total of 15 control rods of 1000 MWe and 1400 MWe PWRs in Korea with worths in the range of 200 pcm -1200 pcm. The results show the average difference of -0.4% and the maximum difference of 7.1% compared to the design values. Therefore, the new DCRM-EK will be applied to PWRs using low sensitivity integral fission chambers, and also can replace the original DCRM when the evaluation fails by big noises present in current or voltage signals of uncompensated/compensated ion chambers.

Synthesis and Morphology Control of Rod Shaped Potassium Hexatitanate (봉상형 육티탄산칼륨(K2Ti6O13) 제조 및 형상제어)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.145-151
    • /
    • 2018
  • Rod shaped Potassium hexatitanate ($K_2Ti_6O_{13}$) was synthesized from colloidal mixture of $TiO_2$, KOH and graphene oxide (GO) by aerosol spray drying and post heat treatment. Firstly, $TiO_2-KOH-GO$ composites were fabricated by aerosol spray drying in argon atmosphere. The composites were then calcined to form a rod shaped morphology of potassium titanate (KTO) in the presence of graphene at $900^{\circ}C$ for 3 h in argon atmosphere. Finally, the rod shaped KTO was obtained after removal of graphene (GR) at $800^{\circ}C$ and 3 h in air atmosphere. Characterization of the synthesized $K_2Ti_6O_{13}$ was carried out using the XRD, BET and FE-SEM. The length and diameter of the synthesized $K_2Ti_6O_{13}$ could be controlled by weight fraction of GO in the aerosol precursor. The length of $K_2Ti_6O_{13}$ rod increased with decreasing its diameter as GO concentration increased. The aspect ratio of the synthesized $K_2Ti_6O_{13}$ rod was controlled from 5 to 13.