DOI QR코드

DOI QR Code

Neutronic assessment of BDBA scenario at the end of Isfahan MNSR core life

  • Ahmadi, M. (Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University) ;
  • Pirouzmand, A. (Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University) ;
  • Rabiee, A. (Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University)
  • Received : 2018.01.08
  • Accepted : 2018.06.03
  • Published : 2018.10.25

Abstract

The present study aims to assess the excess induced reactivity in a Miniature Neutron Source Reactor (MNSR) for a Beyond Design Basis Accident (BDBA) scenario. The BDBA scenario as defined in the Safety Analysis Report (SAR) of the reactor involves sticking of the control rod and filling of the inner and outer irradiation sites with water. At the end of the MNSR core life, 10.95 cm of Beryllium is added to the top of the core as a reflector which affects some neutronic parameters such as effective delayed neutrons fraction (${\beta}_{eff}$), the reactivity worth of inner and outer irradiation sites that are filled with water and the reactivity worth of the control rod. Given those influences and changes, new neutronic calculations are required to be able to demonstrate the reactor safety. Therefore, a validated MCNPX model is used to calculate all neutronic parameters at the end of the reactor core life. The calculations show that the induced reactivity in the BDBA scenario increases at the end of core life to $7.90{\pm}0.01mk$ which is significantly higher than the induced reactivity of 6.80 mk given in the SAR of MNSR for the same scenario but at the beginning of the core's life. Also this value is 3.90 mk higher than the maximum allowable operational limit (i.e. 4.00 mk).

Keywords

References

  1. Code of Conduct on the Safety and Security of Radioactive Sources, IAEA/CODEOC/2004, IAEA, Vienna, 2004.
  2. IAEA Safety of Research Reactors, Specific Safety Requirements SSR-3, 2016. Vienna.
  3. G. Chengzhan, Z. Xianfa, The Iranian MNSR Safety Analysis Report (SAR), China Institute of Atomic Energy, 1992 internal report).
  4. J. Mokhtari, F. Faghihi, J. Khorsandi, Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux, Progress Nuclear Energy 100 (2017) 221-232. https://doi.org/10.1016/j.pnucene.2017.06.010
  5. J. Mokhtari, F. Faghihi, J. Khorsandi, K. Hadad, Conceptual design study of the low power and LEU medical reactor for BNCT using in-tank fission converter to increase epithermal flux, Progress in Nuclear Energy 95 (2017) 70-77. https://doi.org/10.1016/j.pnucene.2016.11.014
  6. M.A. Hosseini, M. Ahmadi, Miniature Neutron Source Reactors in medical research: achievements and challenges, Journal of Radioanalyt. Nucl. Chem. 314 (3) (2017) 1497-1504. https://doi.org/10.1007/s10967-017-5554-x
  7. A. Golabian, M.A. Hosseini, M. Ahmadi, B. Soleimani, M. Rezvanifard, The feasibility study of 177Lu production in Miniature Neutron Source Reactors using a multi-stage approach in Isfahan, Iran, Appl. Rad. Isotopes 131 (2018) 62-66. https://doi.org/10.1016/j.apradiso.2017.11.019
  8. I. Khamis, K. Khattab, Neutronics-design modification of the Syrian miniature neutron source reactor, Progress Nuclear Energy 36 (2) (2000) 91-96. https://doi.org/10.1016/S0149-1970(00)00009-3
  9. S. Waqar, S.M. Mirza, N.M. Mirza, T. Asad, A comparative neutronic study of the standard HEU core and various potential LEU alternatives for a typical MNSR system, Nuclear Eng. Design 238 (9) (2008) 2302-2307. https://doi.org/10.1016/j.nucengdes.2008.03.016
  10. K. Khattab, Measurement of the fast neutron flux in the MNSR inner irradiation site, Applied Rad. Isotopes 65 (1) (2007) 46-49. https://doi.org/10.1016/j.apradiso.2005.11.020
  11. S.A. Agbo, Y.A. Ahmed, I.O.B. Ewa, Y. Jibrin, Analysis of Nigeria research reactor-1 thermal power calibration methods, Nuclear Engineering and Technology 48 (3) (2016) 673-683. https://doi.org/10.1016/j.net.2016.01.014
  12. M. Albarhoum, Reactivity cost for different top reflector materials in miniature neutron source reactors, Progress in Nuclear Energy 58 (2012) 39-44. https://doi.org/10.1016/j.pnucene.2012.01.004
  13. M. Iqbal, M. Abdullah, S. Pervez, Parametric tests and measurements after shimming of a Beryllium reflector in a miniature neutron source reactor (MNSR), Annals Nuclear Energy 29 (13) (2002) 1609-1624. https://doi.org/10.1016/S0306-4549(01)00126-8
  14. K. Khattab, I. Sulieman, Monte Carlo simulation of core physics parameters of the Syrian MNSR reactor, Annals of Nuclear Energy 38 (5) (2011) 1211-1213. https://doi.org/10.1016/j.anucene.2011.01.018
  15. K. Khattab, I. Sulieman, Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code, Applied Radiation and Isotopes 67 (4) (2009) 535-538. https://doi.org/10.1016/j.apradiso.2008.11.002
  16. A. Nawaz, S.M. Mirza, N.M. Mirza, M. Sohail, Analysis of core life-time and neutronic parameters for HEU and potential LEU/MEU fuels in a typical MNSR, Annals of Nuclear Energy 47 (2012) 46-52. https://doi.org/10.1016/j.anucene.2012.04.005
  17. S.A.H. Feghhi, S. Jafarikia, F. Abtin, Miniature neutron source reactor burn up calculations using IRBURN code system, Annals of Nuclear Energy 47 (2012) 242-248. https://doi.org/10.1016/j.anucene.2012.04.016
  18. G. Chengzhan, MNSR Accident (Event) Analysis, China Institute of Atomic Energy, 1992 (internal report).
  19. G. Ke, Z. Sun, F. Shen, T. Liu, Y. Li, Y. Zhou, The study of physics and thermal characteristics for in-hospital neutron irradiator (IHNI), Applied Radiation and Isotopes 67 (7) (2009) S234-S237. https://doi.org/10.1016/j.apradiso.2009.03.117
  20. G. Jilin, General Description of Miniature Neutron Source Reactor, China Institute of Atomic Energy, 1992 internal report).
  21. J. Ebadati, I. Shahabi, M. Rezvanifard, January). Calculation and experiment of adding top beryllium shims for Iran MNSR, in: 14th International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 2006, pp. 311-314.
  22. Monte Carlo N-particle Transport Code System Manual, Los Alamos National Laboratory, New Mexico, April 2000.
  23. James J. Duderstadt, Louis J. Hamilton, Nuclear Reactor Analysis, John Wiley&: Sons, Inc, New York/London, 1976.