• Title/Summary/Keyword: Control Rod

Search Result 554, Processing Time 0.034 seconds

Stable Control-rod Double Hold Method of Control Rod Drive Mechanism (원자로 제어봉구동장치의 안정적 제어봉 이중 유지 방법)

  • Cheon, Jong-Min;Kim, Choon-Kyung;Lee, Jong-Moo;Jung, Soon-Hyun;Kim, Seog-Ju;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.555-558
    • /
    • 2003
  • When a fault relating to the urgent alarm occurs, we must prevent control rods from dropping and make one of two grippers in Control Rod Drive Mechanism (CRDM) grip the drive rod laking a control rod assembly. If a gripper with any problem is ordered to grip the drive rod, the gripper which cannot latch the rod stably will fail to take the rod. On the purpose of escaping this bad case, we order two grippers to hold the drive rod and enhance the reliability of holding control rods. This action is called the double hold. In the middle of the movement of the drive rod, the latching of the drive rod can cause friction between a gripper and the drive rod. This state may give damage to both the gripper and the drive rod. In this paper, we have devised the method which can have two grippers hold the drive rod more stably, without damaging the equipment.

  • PDF

Sensitivity of a control rod worth estimate to neutron detector position by time-dependent Monte Carlo simulations of the rod drop experiment

  • Jong Min Park;Cheol Ho Pyeon;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.916-921
    • /
    • 2024
  • The control rod worth sensitivity to the neutron detector position in the rod drop experiment is studied by the time-dependent Monte Carlo (TDMC) neutron transport calculations for AGN-201K educational reactor and the Kyoto University Critical Assembly. The TDMC simulations of the rod drop experiments are conducted by the Seoul National University Monte Carlo (MC) code, McCARD, yielding time-dependent neutron densities at detector positions. The detector-position-dependent results of the total control rod worth calculated by the extrapolation, the integral counting, and the inverse methods are compared with the numerical reference using the MC eigenvalue calculations and the experimental results. From these comparisons, it is observed that the total control rod worth can be estimated with a considerable difference depending on the detector position through the rod drop experiment. The proposed TDMC simulation of the rod drop experiment can be applied for searching a better detector position or quantifying a bias for the control rod worth measurement.

The Method of safe double holding by detecting movements of Control Rod Drive Mechanism (원자로 제어봉구동장치의 동작 검출을 통한 안전한 이중유지 방법)

  • Cheon, Jong-Min;Kinm, Choon-Kyung;Lee, Jong-Moo;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2655-2657
    • /
    • 2005
  • When a fault relating to the urgent alarm occurs, we must prevent control rods from dropping and make one of two grippers in Control Rod Drive Mechanism (CRDM) grip the drive rod taking a control rod assembly. To enhance the reliability of holding control rods, we order two grippers to hold the drive rod. This action is called the double holding. In the middle of the movement of the drive rod, the latching of the drive rod can cause friction between a gripper and the drive rod. This state may give damage to both the gripper and the drive rod. In this paper, we have devised the method which can have two grippers hold the drive rod more stably, without damaging the equipment.

  • PDF

Control Characteristics Improvement of Single Rod Hydraulic Cylinder Subjected to Varying Load (가변하중을 받는 유압실린더의 제어특성개선)

  • Yum, Man-Oh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • For position control of electro-hydraulic servo system, single rod cylinders and double rod cylinders are used. Single rod cylinders have simple structure for manufacturing but different volume ratio of two sides induce to non-linearity in process of then mathematical modeling. So only with conventional PID control method it is difficult to control single rod cylinders precisely. For mole precise position control of single rod cylinders, a controller which is inserted a velocity feedback PID controller and MRAC controller are proposed. With experiment control performances of three control methods are compared. In case of experiment, for external varying load to the system, a hydraulic cylinder and a pressure control valve are used. In conclusion a MRAC is considered a suitable control method for external varying load.

  • PDF

Control-performance Improvement of Dual EHAs (이중 EHA의 제어 특성 개선)

  • Lee, Seong Ryeol;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.32-38
    • /
    • 2016
  • For this paper, the position-control performances of dual EHA(electro-hydrostatic actuator) systems were investigated according to two cases wherein the double-rod- and single-rod-type hydraulic cylinders were combined. Since the control performance is significantly dependent on the load conditions including external forces such as the inertia load, it is proposed here that the two sub-EHAs are driven by separate position and force controllers, instead of two identical position controllers. According to the simulation results, the best performance was achieved by the position-controlled single-rod-type EHA that was combined with a force-controlled double-rod-type EHA. As the force-controlled double-rod-type EHA compensated for the external loads on the position-controlled single-rod-type EHA, the position-control performance was not influenced by external forces including the inertia load. In addition, the position-controlled single-rod-type EHA contributed to the enhancement of the damping ratio by absorbing the pressure peaks through its internal accumulator. Due to the symmetrical piston areas, the double-rod-type EHA is more suitable for force control than the single-rod- type EHA.

A practical subcritical rod worth measurement technique based on the improved neutron source multiplication method

  • Jiahe Bai;Chenghui Wan;Ser Gi Hong;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1398-1406
    • /
    • 2024
  • The control rod worth is a key safety parameter required to be measured in commercial pressurized water reactors (PWRs). Conventionally, the control rod worth is measured after reaching the critical state, which occupies the considerable time in the zero-power physics test. In this study, an efficient control-rod worth measurement technique has been proposed based on the improved neutron-source multiplication method, which can be implemented with the source-range detector count rates in the subcritical states. Moreover, the noise reduction technique has been adopted to smooth the large fluctuation existing in the original signals. In order to verify the engineering performance of the proposed measurement technique, the measured source-range detector count rates during the rod withdrawal process before reaching critical state in a CNP1000 reactor have been employed. It demonstrated that almost all estimated results of control rod worth satisfy the engineering acceptance criteria, except one control rod with the relative difference over 10 %, which indicates the capability of the proposed method in estimating control rod worth.

Drop Time Evaluation for SMART Control Rod Assembly (스마트 제어봉집합체의 낙하시간 평가)

  • Kim, Kyoung-Rean;Jang, Ki-Jong;Park, Jin-Seok;Lee, Won-Jae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.25-28
    • /
    • 2011
  • The control rod assemblies do freely fall into the reactor core by the gravity from the control rod drive mechanism. In order to achieve a rapid shutdown and control the reactor power, it is required to insert control rod assemblies as soon as possible. In this paper, we evaluated the drop time and flow characteristics caused around guide tube for SMART(System-integrated modular advanced reactor) control rod assembly. Numerical analyses are carried out with FLUENT program of computational fluid dynamics. This study results show that the drop time of the control rod assembly in the operating condition of SMART is more 20 percent rapidly than the drop time of the room temperature and ambient atmosphere condition.

A Research on Optimization of Lead-lag Controller Setpoint for Rod control system to prevent fluctuation for NPP (원전 제어봉제어계통 순시변동을 방지하기위한 지상-지연회로 설정치 최적화 연구)

  • Yoon, Duk-Joo;Lee, Jae-Yong;Kim, In-Hwan;Kim, Joo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1149-1154
    • /
    • 2007
  • Fluctuation of control rod was experienced when plant was operating in normal operation mode in WH type NPPs. In order to cope with increased control rod fluctuation, the lead-lag controller setpoint for rod control system was optimized and resulted in increasing the margin of operation and minimizing unnecessary control rod movement. By optimization of the time constant, the margin of operation was increased by $1.5^{\circ}F$ and the control rod movement was not occurred due to mitigation of temperature fluctuation in loop. According to the mitigation of time constant, the margin of operation was increased but safety margin can be affected badly, so that the influences to FSAR design reference was evaluated. As the result of this evaluation, it satisfied the design reference of the existing safety analysis and was applied to NPP after obtaining the approval.

  • PDF

Study on Rod Position Indication System using Permanent Magnets with Shielding Plates for a Control Rod Drive Mechanism

  • Lee, Jae Seon;Cho, Sang Soon;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.439-443
    • /
    • 2015
  • A control rod drive mechanism (CRDM) is an electromechanical equipment that provides linear movement for the control rods to control the nuclear reactivity in a nuclear reactor. A rod position indication system (RPIS) detects the control rod's position. To enhance the measurement accuracy of the system, a magnetostrictive type sensor with capability of generating operation limiting signals would be adapted instead of a conventional RPIS for a CRDM. An RPIS was modelled for a numerical analysis with the permanent magnets at the stationary limit positions and magnetic shielding plates with a moving permanent magnet. The performance analysis of the RPIS were conducted, and the results were discussed here.

The Design, Fabrication, and Characteristic Experiment for Control Rod Position Indicator Using Reed Switch in System-Integrated Modular Advanced Reactor (리드스위치를 이용한 일체형원자로용 제어봉 위치지시기 설계 제작 및 특성해석)

  • Hur, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.452-461
    • /
    • 2003
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indicator system and its actual implementation in the existing nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indicator. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indicator as well. This paper investigates efficiency of the magnetic flux concentrator and the hysteresis using FEM and verified differences in physicals characteristics by comparing the results of FEM and those of the experiment. As a result, it is shown that the characteristics of prototype control rod position indicator have a good agreement with the results of FEM.