DOI QR코드

DOI QR Code

A practical subcritical rod worth measurement technique based on the improved neutron source multiplication method

  • Jiahe Bai (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Chenghui Wan (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Ser Gi Hong (Department of Nuclear Engineering, Hanyang University) ;
  • Hongchun Wu (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • 투고 : 2023.07.13
  • 심사 : 2023.11.26
  • 발행 : 2024.04.25

초록

The control rod worth is a key safety parameter required to be measured in commercial pressurized water reactors (PWRs). Conventionally, the control rod worth is measured after reaching the critical state, which occupies the considerable time in the zero-power physics test. In this study, an efficient control-rod worth measurement technique has been proposed based on the improved neutron-source multiplication method, which can be implemented with the source-range detector count rates in the subcritical states. Moreover, the noise reduction technique has been adopted to smooth the large fluctuation existing in the original signals. In order to verify the engineering performance of the proposed measurement technique, the measured source-range detector count rates during the rod withdrawal process before reaching critical state in a CNP1000 reactor have been employed. It demonstrated that almost all estimated results of control rod worth satisfy the engineering acceptance criteria, except one control rod with the relative difference over 10 %, which indicates the capability of the proposed method in estimating control rod worth.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (No. 12005164), the China Scholarship Council (No. 202206280230), and technically supported by the Jiangsu Nuclear Power Co. Ltd. for the CNP1000 PWR modelling and simulation and by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106075).

참고문헌

  1. Y.A. Chao, D.M. Chapman, D.J. Hill, et al., Dynamic rod worth measurement, Nucl. Technol. 132 (2000) 403-412, https://doi.org/10.13182/NT00-A3153.
  2. J. Bai, C. Wan, Y. Li, et al., Research of dynamic rod worth measurement technique based on the pin-by-pin response function, Ann. Nucl. Energy 193 (2023), 110039, https://doi.org/10.1016/j.anucene.2023.110039.
  3. S.G. Hong, J.S. Song, A preliminary simulation study of dynamic rod worth for the SMART (System-integrated Modular Advanced ReacTor) reactor, Ann. Nucl. Energy 60 (2013) 350-356, https://doi.org/10.1016/j.anucene.2013.05.014.
  4. B.E. Simmons, J.S. King, A pulsed neutron technique for reactivity determination, Nucl. Sci. Eng. 3 (1958) 595-608, https://doi.org/10.13182/NSE3-595-608.
  5. C.M. Persson, A. Fokau, I. Serafimovich, et al., Pulsed neutron source measurements in the subcritical ADS experiment YALINA-Booster, Ann. Nucl. Energy 35 (2008) 2357-2364, https://doi.org/10.1016/j.anucene.2008.07.011.
  6. C.M. Persson, P. Seltborg, A. Ahlander, et al., Analysis of reactivity determination methods in the subcritical experiment Yalina, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 554 (2005) 374-383, https://doi.org/10.1016/j.nima.2005.07.058.
  7. V. Becares, D. Villamarin, M. Fernandez-Ordones, et al., Validation of ADS reactivity monitoring techniques in the Yalina-Booster subcritical assembly, Ann. Nucl. Energy 53 (2013) 331-341, https://doi.org/10.1016/j.anucene.2012.10.001.
  8. B. Wan, Q. Zhou, L. Chen, et al., Reactivity measurement at VENUS-II during control rods drop based on inverse kinetics method, Nucl. Eng. Des. 338 (2018) 284-289, https://doi.org/10.1016/j.nucengdes.2018.08.019.
  9. E.K. Lee, D.H. Park, H. Choi, Experimental determination of subcriticality at subcritical PWRs in Korea, Ann. Nucl. Energy 37 (2010) 1601-1608, https://doi.org/10.1016/j.anucene.2010.06.022.
  10. S. Moon, J.H. Kim, M.H. Kim, S.G. Hong, Subcriticality measurement using Feynman-a analysis with a fully random sampling and second-order filtering technique for AGN-201K, Trans. Am. Nucl. Soc. 121 (2019) 961-964. https://doi.org/10.13182/T31256
  11. S. Malkawi, F. Sweidan, H. Khalifech, Reactivity determination in a subcritical reactor: computational, analytical and experimental methods, Ann. Nucl. Energy 161 (2021), 108432, https://doi.org/10.1016/j.anucene.2021.108432.
  12. M. Tsuji, N. Suzuki, Y. Shimazu, Subcriticality measurement by neutron source multiplication method with a fundamental mode extraction, J. Nucl. Sci. Technol. 40 (2003) 158-169, https://doi.org/10.1080/18811248.2003.9715346.
  13. W. Naing, M. Tsuji, Y. Shimazu, The effect of neutron source distribution on subcriticality measurement of pressurized water reactors using the modified neutron source multiplication method, J. Nucl. Sci. Technol. 40 (2003) 951-958, https://doi.org/10.1080/18811248.2003.9715438.
  14. Y. Shimazu, M. Tsuji, T. Narabayashi, Examination of actual neutron count rate data during a control rod drop testing for estimation of control rod worth in PWRs, J. Nucl. Sci. Technol. 48 (2011) 353-358, https://doi.org/10.1080/18811248.2011.9711710.
  15. G. Truchet, W.F.G.V. Rooijen, Y. Shimazu, K. Yamaguchi, Application of the modified neutron source multiplication method to the prototype FBR Monju, Ann. Nucl. Energy 51 (2013) 94-106, https://doi.org/10.1016/j.anucene.2012.07.040.
  16. Y. Wang, Y. Zheng, L. Xu, L. Cao, NECP-hydra: a high-performance parallel SN code for core-analysis and shielding calculation, Nucl. Eng. Des. 366 (2020), 110711, https://doi.org/10.1016/j.nucengdes.2020.110711.
  17. L. Xu, H. Shen, J. Wei, et al., Study of the PWR ex-core detector response simulation based on the 3D SN method, Ann. Nucl. Energy 139 (2020), 107223, https://doi.org/10.1016/j.anucene.2019.107223.
  18. S.W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, 1999.
  19. J. Bai, C. Wan, Y. Li, et al., A Source-expansion-based method for transient Pin-Power reconstruction, Ann. Nucl. Energy 164 (2021), 108565, https://doi.org/10.1016/j.anucene.2021.108565.